Polymeric Frontiers in Gastroretentive Drug Delivery: From Benchside Innovation to Clinical Reality Review Article
Main Article Content
Abstract
This review evaluates recent advancements in floating Gastro-retentive drug delivery systems, or GRDDS and emphasises the importance of polymers in enhancing buoyancy, gastric retention, and controlled drug release. . The literature was reviewed using a focused narrative approach covering peer‑reviewed research articles published between 2015 and 2025, selected from major scientific databases based on relevance to polymer‑based GRDDS design and performance. It emphasises the need for a cogent understanding that links the properties of polymers in GRDDS to their functionality. Examined are the effects of various synthetic and natural polymers on swelling behaviour, mucoadhesiveness, and matrix integrity, such as xanthan gum, polyethylene oxide (PEO), and hypromellose (HPMC). By identifying relationships between polymer characteristics and drug retention capacities, the review offers a methodology for optimising polymer selection to improve bioavailability and therapeutic outcomes for drugs requiring prolonged stomach residence. Enhancing patient compliance and medication delivery effectiveness is the ultimate objective of this polymer-driven approach.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1. Vinarov Z, Abdallah M, Agundez JA, Allegaert K, Basit AW, Braeckmans M. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. European Journal of Pharmaceutical Sciences. 2021;162:105812.
2. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. International journal of pharmaceutics. 2016;510(1):144-58.
3. Mandal UK, Chatterjee B, Senjoti FG. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian journal of pharmaceutical sciences. 2016;11(5):575-84.
4. Iglesias N, Galbis E, Romero-Azogil L, Benito E, Lucas R, García-Martín MG. In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics. 2020;12(7):636.
5. Thapa P, Jeong SH. Effects of formulation and process variables on gastroretentive floating tablets with a high-dose soluble drug and experimental design approach. Pharmaceutics. 2018;10(3):161.
6. Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. Journal of Controlled release. 2000;63(3):235-59.
7. Nayak AK, Malakar J, Sen KK. Gastroretentive drug delivery technologies: Current approaches and future potential. Journal of Pharmaceutical Education and Research. 2010;1(2):1.
8. Sharma V, Rathore D, Kumar A. Floating drug delivery system: a review. Int J Med Biomed Stud. 2020;4:23-30.
9. Shruti S, Ashish P, Shikla A, Raju C. A review on: Recent advancement of stomach specific floating drug delivery system. Int J Pharma Bio Ach. 2011;2:1561-8.
10. Shinde S, Tadwee I, Shahi S. Gastro retentive drug delivery system: A review. Int J Pharm Res & All Sci. 2012;1(1):01-13.
11. Soppimath KS, Kulkarni AR, Rudzinski WE, Aminabhavi TM. Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug metabolism reviews. 2001;33(2):149-60.
12. Mukund JY, Kantilal BR, Sudhakar RN. Floating microspheres: a review. Brazilian Journal of Pharmaceutical Sciences. 2012;48:17-30.
13. Shaha S, Patel J, Pundarikakshudu K, Patel N. An overview of a gastro-retentive floating drug delivery system. Asian journal of pharmaceutical sciences. 2009;4(1):65-80.
14. Lodh H, Sheeba F, Chourasia PK, Pardhe HA, Pallavi N. Floating drug delivery system: A brief review. Asian Journal of Pharmacy and Technology. 2020;10(4):255-64.
15. Shashank C, Prabha K, Sunil S, Vipin Kumar A. Approaches to increase the gastric residence time: floating drug delivery systems-a review. Asian J Pharm Clin Res. 2013;6(3):1-9.
16. Shah S, Patel J, Patel N. Stomach specific floating drug delivery system: A review. Int J Pharm Tech Res. 2009;1(3):623-33.
17. Patil J, Hirlekar R, Gide P, Kadam V. Trends in floating drug delivery systems. Journal of scientific and industrial research. 2006;65(1):11.
18. Jassal M, Nautiyal U, Kundlas J, Singh D. A review: Gastroretentive drug delivery system (grdds). Indian journal of pharmaceutical and biological research. 2015;3(1):82.
19. Kamalakkannan V, Puratchikody A, Prasanth VV, Masilamani K. Enhancement of drugs bioavailability by floating drug delivery system-A review. International Journal of Drug Delivery. 2011;3(4):558.
20. Sarawade A, Ratnaparkhi M, Chaudhari S. Floating drug delivery system: an overview. International Journal of Research and Development in Pharmacy & Life Sciences. 2014;3(5):1106-15.
21. Vrettos N-N, Roberts CJ, Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics. 2021;13(10):1591.
22. Tripathi J, Thapa P, Maharjan R, Jeong SH. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019;11(4):193.
23. Jagdale SC, Bari NA, Kuchekar BS, Chabukswar AR. Optimization Studies on Compression Coated Floating‐Pulsatile Drug Delivery of Bisoprolol. BioMed research international. 2013;2013(1):801769.
24. Cvijic S, Ibric S, Parojcic J, Djuris J. An in vitro-in silico approach for the formulation and characterization of ranitidine gastroretentive delivery systems. Journal of Drug Delivery Science and Technology. 2018;45:1-10.
25. Lalge R, Thipsay P, Shankar VK, Maurya A, Pimparade M, Bandari S, et al. Preparation and evaluation of cefuroxime axetil gastro-retentive floating drug delivery system via hot melt extrusion technology. International journal of pharmaceutics. 2019;566:520-31.
26. Ahmad H, Boutaous Mh, Xin S, Pabiou H, Siginer DA. Rheological Characterization of High-Molecular-Weight Polyethylene Oxide—An Extensive Parametric Experimental Study. Journal of Fluids Engineering. 2023;145(2):021204.
27. Perioli L, Pagano C. Gastroretentive inorganic–organic hybrids to improve class IV drug absorption. International Journal of Pharmaceutics. 2014;477(1-2):21-31.
28. Bahadur S, Manisha S, Baghel P, Yadu K, Naurange T. An overview on various types of gastroretentive drug delivery system. ScienceRise: Pharmaceutical Science. 2020(6 (28)):4-13.
29. Ma P-J, Gao G-J, Chang H-G, Shen F-Z, Hui L, Jin B-Z. Prolonged and floating drug delivery system of gabapentin for effective management of pain in spinal cord injury. International Journal of Pharmacology. 2016;12(4):435-9.
30. Wani TU, Mir KB, Fazli AA, Raza SN, Khan NA. HPMC/Carbopol based extended release gastroretentive dosage form of losartan potassium: Formulation and in vivo pharmacokinetic evaluation in rabbits. Journal of Drug Delivery Science and Technology. 2020;60:102006.
31. Fernandes GJ, Rathnanand M. Formulation optimization for gastroretentive drug delivery system of carvedilol cocrystals using design of experiment. Journal of Pharmaceutical Innovation. 2020;15(3):455-66.
32. SHINDE AKJ, PATIL NS, JADHAV TS, MORE HN. Design and development of floating pulsatile drug delivery of losartan potassium. environments. 2020;2:3.
33. Sungthongjeen S, Sriamornsak P, Puttipipatkhachorn S. Design of floating HPMC matrix tablets: Effect of formulation variables on floating properties and drug release. Advanced Materials Research. 2011;311:1140-3.
34. Rao GK, Mandapalli PK, Manthri R, Reddy VP. Development and in vivo evaluation of gastroretentive delivery systems for cefuroxime axetil. Saudi Pharmaceutical Journal. 2013;21(1):53-9.
35. Jadi RK, Bomma R, Sellappan V. Development of a new single unit dosage form of propranolol HCl extended release non-effervescent floating matrix tablets: In vitro and in vivo evaluation. Journal of applied pharmaceutical science. 2016;6(5):112-8.
36. Bhamare V, Amrutkar R, Patil V, Upasani C. Growing impact of herbal bioenhancers in pharmaceutical industries. Drug Delivery Technology: Herbal Bioenhancers in Pharmaceuticals. 2022:191.
37. Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. Effect of HPMC and Carbopol on the release and floating properties of Gastric Floating Drug Delivery System using factorial design. International journal of pharmaceutics. 2003;253(1-2):13-22.
38. Maqbool T, Yousuf RI, Ahmed FR, Shoaib MH, Irshad A, Saleem MT. Cellulose ether and carbopol 971 based gastroretentive controlled release formulation design, optimization and physiologically based pharmacokinetic modeling of ondansetron hydrochloride minitablets. 2024;276:133841.
39. Vasvári G, Haimhoffer Á, Horváth L, Budai I, Trencsényi G, Béresová M. Development and characterisation of gastroretentive solid dosage form based on melt foaming. AAPS PharmSciTech. 2019;20(7):290.
40. Haimhoffer Á, Fenyvesi F, Lekli I, Béresová M, Bak I, Czagány M. Preparation of acyclovir-containing solid foam by ultrasonic batch technology. Pharmaceutics. 2021;13(10):1571.
41. Chen YC, Lee LW, Ho HO, Sha C, Sheu MT. Evaluation of water uptake and mechanical properties of blended polymer films for preparing gas‐generated multiple‐unit floating drug delivery systems. Journal of pharmaceutical sciences. 2012;101(10):3811-22.
42. Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric excipients in the technology of floating drug delivery systems. Pharmaceutics. 2022;14(12):2779.
43. Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature reviews Drug discovery. 2019;18(4):273-94.
44. Rakesh Pahwa RP, Shiv Bhagwan SB, Vipin Kumar VK, Kanchan Kohli KK. Role of natural polymers in the development of floating drug delivery systems. 2010.
45. Thahera P, Ashok M, Latha K, Shailaja T, Nyamathulla S, Uhumwangho M. Formulation and evaluation of Norfloxacin gastro retentive drug delivery systems using natural polymers. International Current Pharmaceutical Journal. 2012;1(7):155-64.
46. Rahi FA. Review Article on Advanced Polymers Used in Gastroretentive Drug Delivery Systems (GDDS). Maaen Journal for Medical Sciences. 2022;1(1):1.
47. Kaushik AY, Tiwari AK, Gaur A. Role of excipients and polymeric advancements in preparation of floating drug delivery systems. International journal of pharmaceutical investigation. 2015;5(1):1.
48. Al-Saidan SM, Krishnaiah YS, Patro S, Satyanaryana V. In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Aaps Pharmscitech. 2005;6(1):5.
49. Gomber C, Parihar S. Envisioning the role of renewable energy sources for a sustainable future. International Journal of Environmental Engineering and Management. 2013;4:25.
50. Toti US, Aminabhavi TM. Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. Journal of Controlled Release. 2004;95(3):567-77.
51. Jain N, Kulkarni K, Talwar N. Controlled-release tablet formulation of isoniazid. Die Pharmazie. 1992;47(4):277-8.
52. Owen S. Mineral Oil, dalam Rowe, RC, Sheskey, PJ, and Owen, SC, Handbook of Pharmaceutical Excipient, 471-473. Pharmaceutical Press, London; 2005.
53. Patel VF, Patel NM. Statistical evaluation of influence of xanthan gum and guar gum blends on dipyridamole release from floating matrix tablets. Drug development and industrial pharmacy. 2007;33(3):327-34.
54. Hegyesi D. Study of the widely used ethylcellulose polymer as film forming and matrix former agent: University of Szeged (Hungary); 2016.
55. Ibrahim M, Naguib YW, Sarhan HA, Abdelkader H. Gastro-retentive oral drug delivery systems: A promising approach for narrow absorption window drugs. Journal of Advanced Biomedical and Pharmaceutical Sciences. 2019;2(3):98-110.
56. El Nashar NF, Donia AA, Mady OY, El Maghraby GM. Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori. Journal of Drug Delivery Science and Technology. 2017;41:213-21.
57. El-masry SM, ElBedaiwy HM, Habib DA. Gastroretentive floating matrix tablets of cefditoren pivoxil: 23 full factorial design, formulation, in vitro evaluation, and optimization. Journal of Applied Pharmaceutical Science. 2022;12(2):116-25.
58. Saad I. Formulation and Evaluation of Floating Microspheres of Clarithromycin. Journal of College of Education for Pure Science. 2017;7(3).
59. McLeod RS, Hopfe CJ, Rezgui Y. An investigation into recent proposals for a revised definition of zero carbon homes in the UK. Energy Policy. 2012;46:25-35.
60. Sonar GS, Jain D, More D. Preparation and in vitro evaluation of bilayer and floating-bioadhesive tablets of rosiglitazone maleate. Asian J Pharm Sci. 2007;2(4):161-9.
61. Nakamichi K, Yasuura H, Fukui H, Oka M, Izumi S. Evaluation of a floating dosage form of nicardipine hydrochloride and hydroxypropylmethylcellulose acetate succinate prepared using a twin-screw extruder. International journal of pharmaceutics. 2001;218(1-2):103-12.
62. Saritha M, Chowdary K, Ratna JV. Formulation of pioglitazone floating tablets: a comparative evaluation of olibanum, starch acetate and HPMC K15M. Journal of Global Trends in Pharmaceutical Sciences. 2013;4(3):1237-43.
63. Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients: Pharmaceutical press London; 2006.
64. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. Journal of controlled release. 2003;89(2):151-65.
65. El-Gibaly I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. International journal of pharmaceutics. 2002;249(1-2):7-21.
66. Svirskis D, Seyfoddin A, Chalabi S, In Kim JH, Langford C, Painter S. Development of mucoadhesive floating hollow beads of acyclovir with gastroretentive properties. Pharmaceutical development and technology. 2014;19(5):571-6.
67. Hasçiçek C, Yüksel-Tilkan G, Türkmen B, Özdemir N. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid. Acta Pharmaceutica. 2011;61(3):303.
68. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. International journal of pharmaceutics. 2001;224(1-2):19-38.
69. Badve SS, Sher P, Korde A, Pawar AP. Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery. European journal of pharmaceutics and biopharmaceutics. 2007;65(1):85-93.
70. Abouelatta SM, Aboelwafa AA, Khalil RM, El-Gazayerly ON. Utilization of ionotropic gelation technique for bioavailability enhancement of cinnarizine: in-vitro optimization and in-vivo performance in human. Drug Delivery. 2016;23(8):2736-46.
71. Sriamornsak P, Thirawong N, Puttipipatkhachorn S. Emulsion gel beads of calcium pectinate capable of floating on the gastric fluid: effect of some additives, hardening agent or coating on release behavior of metronidazole. European journal of pharmaceutical sciences. 2005;24(4):363-73.
72. Zardi EM, Chello M, Zardi DM, Barbato R, Giacinto O, Mastroianni C, et al. Nosocomial extracardiac infections after cardiac surgery. Current infectious disease reports. 2022;24(11):159-71.
73. Prasad N, Pandey SK, Kale S, Sharma SC. Processing of Natural Gums and Resins. Natural Gums and Resins: Botany and Sustainable Uses in Medicine, Nutrition, Perfumery and Cosmetics: CABI GB; 2025. p. 217-64.
74. Qureshi MA, Nishat N, Shahadat M. Industrially and biomedically important guargum based nano composites and their methods of synthesis: a review. Advanced Composite Materials. 2023;32(3):437-59.
75. Ibrahim IM. Advances in polysaccharide-based oral colon-targeted delivery systems: the journey so far and the road ahead. Cureus. 2023;15(1).
76. Waqar MA, Mubarak N, Khan AM, Khan R, Shaheen F, Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. Journal of drug targeting. 2024;32(6):655-71.
77. Dhiman S, Philip N, Gurjeet Singh T, Babbar R, Garg N, Diwan V. An insight on novel approaches & perspectives for gastro-retentive drug delivery systems. Current Drug Delivery. 2023;20(6):708-29.
78. Haimhoffer Á, Dossi E, Béresová M, Bácskay I, Váradi J, Afsar A. Preformulation studies and bioavailability enhancement of curcumin with a ‘two in one’PEG-β-cyclodextrin polymer. Pharmaceutics. 2021;13(10):1710.
79. Pham Le Khanh H, Nemes D, Rusznyák Á, Ujhelyi Z, Fehér P, Fenyvesi F. Comparative investigation of cellular effects of polyethylene glycol (PEG) derivatives. Polymers. 2022;14(2):279.
80. Le Khanh HP, Haimhoffer Á, Nemes D, Józsa L, Vasvári G, Budai I, et al. Effect of Molecular Weight on the Dissolution Profiles of PEG Solid Dispersions Containing Ketoprofen. Polymers. 2023;15(7):1758.
81. Shirolkar SV, Tawar MG, Gandhi NS, Deore NB. Development and evaluation of floating microspheres of Pioglitazone hydrochloride using ethyl cellulose. Der Pharmacia Lettre. 2010;2(5):261-77.
82. Dubey A, Ovais M, Bisen AC, Rajendiran A. Advancements and Challenges in Gastroretentive Drug Delivery Systems: A Comprehensive Review of Research Innovation, Technologies, and Clinical Applications. Recent Advances in Drug Delivery and Formulation. 2025.
83. Rai S, Whanmek K, Akanitkul P, Deeaum A, Winuprasith T, Kemsawasd V. Fabrication of Alginate/Chitosan Composite Beads for Improved Stability and Delivery of a Bioactive Hydrolysate From Shrimp (Litopenaeus vannamei) Head. Food Science & Nutrition. 2025;13(6):e70443.
84. Palanivelu J, Thanigaivel S, Vickram S, Dey N, Mihaylova D, Desseva I. Probiotics in functional foods: survival assessment and approaches for improved viability. Applied Sciences. 2022;12(1):455.
85. Sharafi Zamir S, Sadeghi A, Razavi SMA. Dual Non‐Thermal Physical and Chemical Modification Methods of Starch: Unlocking New Potentials for High‐Performance Polymer Composites. Starch‐Stärke. 2025:e70026.
86. Cheng F, Ai Y, Ghosh S. Utilization of octenyl succinic anhydride-modified pea and corn starches for stabilizing oil-in-water emulsions. Food Hydrocolloids. 2021;118:106773.
87. Saxena S. Polyvinyl alcohol (PVA). Chemical and Technical Assessment. 2004;1(3):3-5.
88. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. Journal of Drug Delivery Science and Technology. 2019;52:831-7.
89. Reddy K, Prathyusha P, Reddy K, Kumar N, Prasad N. Design and evaluation of floating drug delivery system of cephalexin. J Pharm Biomed Sci. 2011;10:1-4.
90. Semalty M, Yadav S, Semalty A. Preparation and characterization of gastroretentive floating microspheres of ofloxacin hydrochloride. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2010;3(1):819-23.
91. Andini S, Sa’diah S, Puspa S. Preparasi dan Karakteristik Floating Tablet Ekstrak Daun Jambu Biji (Psidium guajava L.) dengan Variasi Kombinasi Xanthan Gum dan HPMC: Preparation and Characteristics of Floating Tablets of Guava Leaf Extract (Psidium guajava L.) With Variations of Xanthan Gum and HPMC Combinations. Jurnal Sains dan Kesehatan. 2022;4(4):370-8.
92. Qi X, Chen H, Rui Y, Yang F, Ma N, Wu Z. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent. International journal of pharmaceutics. 2015;489(1-2):210-7.
93. Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering. 2021;9(1):104702.
94. Strübing S, Abboud T, Contri RV, Metz H, Mäder K. New insights on poly (vinyl acetate)-based coated floating tablets: characterisation of hydration and CO2 generation by benchtop MRI and its relation to drug release and floating strength. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(2):708-17.
95. Kumar V, Sharma N. Formulation and Evaluation of Azithromycin Dihydrate Based In situ Gel as Floating Drug Delivery System. Int Pharm Sci 2023; 16 (1): 130 doi: 1031531/2231.5896.
96. Krögel I, Bodmeier R. Floating or pulsatile drug delivery systems based on coated effervescent cores. International journal of Pharmaceutics. 1999;187(2):175-84.
97. Choudhury PK, Kar M, Chauhan CS. Cellulose acetate microspheres as floating depot systems to increase gastric retention of antidiabetic drug: formulation, characterization and in vitro–in vivo evaluation. Drug development and industrial pharmacy. 2008;34(4):349-54.
98. Mary CS, Swamiappan S. Sodium alginate with PEG/PEO blends as a floating drug delivery carrier–in vitro evaluation. Advanced Pharmaceutical Bulletin. 2016;6(3):435.
99. Sungthongjeen S, Paeratakul O, Limmatvapirat S, Puttipipatkhachorn S. Preparation and in vitro evaluation of a multiple-unit floating drug delivery system based on gas formation technique. International journal of Pharmaceutics. 2006;324(2):136-43.
100. Xu J, Tan X, Chen L, Li X, Xie F. Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohydrate Polymers. 2019;215:151-9.
101. Rai D, Pandey D, Jain NP, Jain SK. Formulation development and evaluation of floating microsphere of famotidine for the treatment of peptic ulcer. 2011.
102. George A, Shah PA, Shrivastav PS. Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal. 2019;112:722-35.