Integrated Molecular, Regenerative and Technological Innovations in the Modern Management of Diabetic Peripheral Neuropathy Review Article
Main Article Content
Abstract
By combining molecular, regenerative, and technological advancements, the treatment of diabetic peripheral neuropathy (DPN) is moving away from insufficient symptomatic pain relief and towards disease-modifying approaches. This all-encompassing method critically investigates pharmacological agents such as novel ion channel modulators for selective pain control and Mitochondria-Targeted Antioxidants (MTAs) to fight metabolic stress. Along with individualized lifestyle interventions like supervised exercise to increase IENF density and AI-driven precision nutrition, it also integrates state-of-the-art regenerative techniques, such as the paracrine effects of MSC-derived exosomes and the creation of smart biomaterial scaffolds for guided axonal repair. The review creates a vital framework for multi-modal, neuroprotective, and regenerative approaches that are critical for greatly enhancing functional outcomes and quality of life for DPN patients by bridging these disparate fields.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1. Hicks C, Selvin E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Current Diabetes Reports. 2019;19:86.
2. Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Frontiers in Endocrinology. 2024;14:1225684.
3. Savelieff M, Elafros M, Viswanathan V, Jensen T, Bennett D, Feldman E. The global and regional burden of diabetic peripheral neuropathy. Nature reviews Neurology. 2024; 20:77–92.
4. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nature Reviews Endocrinology. 2021;17:400-20.
5. Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduction and Targeted Therapy. 2025;10:12.
6. Zhou P, Zhou JS, Li JJ, Qin L, Hu W, Zhang XY. Prevalence and risk factors for painful diabetic peripheral neuropathy: a systematic review and meta-analysis. Frontiers in Neurology. 2025;16:1342216.
7. Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S. New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine. Frontiers in Endocrinology. 2020;10:929.
8. Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. Journal of clinical orthopaedics and trauma. 2021;17:88-93.
9. Khan S, Ahmad S, Khan M, Lohani M, Khan MS, Haneef M. Diabetic Peripheral Neuropathy: Navigating Controversies and Pioneering Advances. Advancements in Life Sciences. 2025;12:240–252.
10. Nube V, McMorrow R, Manski-Nankervis J. Preventing diabetes-related foot ulcers through early detection of peripheral neuropathy. Australian journal of general practice. 2022;51 11:833-8.
11. Khawaja N, Abu-Shennar J, Saleh M, Dahbour S, Khader Y, Ajlouni K. The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus; the case of Jordan. Diabetology & Metabolic Syndrome. 2018;10:67.
12. Lu Y, Xing P, Cai X, Luo D, Li R, Lloyd C. Prevalence and Risk Factors for Diabetic Peripheral Neuropathy in Type 2 Diabetic Patients From 14 Countries: Estimates of the INTERPRET-DD Study. Frontiers in Public Health. 2020;8;534372.
13. Preston FG, Riley DR, Azmi S, Alam U. Painful diabetic peripheral neuropathy: practical guidance and challenges for clinical management. Diabetes, Metabolic Syndrome and Obesity. 2023:1595-612.
14. Hieronymi A. Understanding systems science: A visual and integrative approach. Systems research and behavioral science. 2013;30(5):580-95.
15. Sorger PK, Allerheiligen SR, Abernethy DR, Altman RB, Brouwer KL, Califano A., editors. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. An NIH white paper by the QSP workshop group; 2011: NIH Bethesda Bethesda.
16. Othman ZK, Ahmed MM, Kasimieh O, Musa SS, Branda F, Cue EG. Artificial intelligence for natural product drug discovery and development: current landscape, applications, and future directions. Intelligence-Based Medicine. 2025:100316.
17. Otero M, Henao-Romero N, Krysak T, Vu-Lu M, Morales OM, Momeni Z. Hyperglycemia-induced mitochondrial abnormalities in autonomic neurons via the RAGE axis. Scientific Reports. 2025;15.
18. Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W-W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Frontiers in Endocrinology. 2023;14.
19. González P, Lozano P, Ros G, Solano F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. International Journal of Molecular Sciences. 2023;24.
20. Tashkandi A, Gorman A, Mathers EM, Carney G, Yacoub A, Setyaningsih W. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. International Journal of Molecular Sciences. 2025;26.
21. Rudokas M, McKay M, Toksoy Z, Eisen J, Bögner M, Young L. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovascular Diabetology. 2024;23.
22. Fields M, Marcuzzi A, Gonelli A, Celeghini C, Maximova N, Rimondi E. Mitochondria-Targeted Antioxidants, an Innovative Class of Antioxidant Compounds for Neurodegenerative Diseases: Perspectives and Limitations. International Journal of Molecular Sciences. 2023;24.
23. Jiang Q, Yin J, Chen J, Xiaokang, Wu M, Liu G. Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. Oxidative Medicine and Cellular Longevity. 2020;2020.
24. Fernandes C, Videira A, Veloso C, Benfeito S, Soares P, Martins. Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis. Biomolecules. 2021;11.
25. Trnka J, Elkalaf M, Andel M. Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton Leak. PLoS ONE. 2015;10.
26. Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opinion on Therapeutic Targets. 2023;27:939-52.
27. Alles S, Smith P. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. Frontiers in Pain Research. 2021;2.
28. Flinspach M, Xu Q, Ad P, Fellows R, Hagan R, Gibbs A. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Scientific Reports. 2017;7.
29. Wang J, Liu Y, Hu F, Ju C. A novel and potent neuronal Kv7 channel opener SCR2682 alleviates chronic pain in rats. The FASEB Journal. 2020;34.
30. Wang J, Liu Y, Hu F, Yang J, Guo X, Hou. Activation of Neuronal Voltage-Gated Potassium Kv7/KCNQ/M-Current by a Novel Channel Opener SCR2682 for Alleviation of Chronic Pain. The Journal of Pharmacology and Experimental Therapeutics. 2021;377:20-8.
31. Xie Y-F, Yang J, Ratté S, Prescott S. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife. 2024;12.
32. Kang S, Kim H-J, Sukhwal, Oh D-Y, Jang J, Seo C. Liquid plasma promotes angiogenesis through upregulation of endothelial nitric oxide synthase-induced extracellular matrix metabolism: potential applications of liquid plasma for vascular injuries. Cell Communication and Signaling : CCS. 2024;22.
33. Hayashida R, Kondo K, Morita S, Unno K, Shintani S, Shimizu. Diallyl Trisulfide Augments Ischemia-Induced Angiogenesis via an Endothelial Nitric Oxide Synthase-Dependent Mechanism. Circulation journal : official journal of the Japanese Circulation Society. 2017;81 6:870-8.
34. Șerban M, Toader C, Covache-Busuioc R-A. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. International Journal of Molecular Sciences. 2025;26.
35. Hibino M, Filosi T, Carrion LL, Porcu E, Malhotra A, Lüdtke-Buzug K. An effective approach to modulate mitochondrial function in murine primary macrophages by a mitochondria-targeted nanocapsule, MITO-Porter. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2025;186:118019.
36. Cheng Q, Chen J, Guo H, Lu J, Zhou J, Guo X. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation. Acta Pharmacologica Sinica. 2020;42:665-78.
37. Zinovkin RA, Zamyatnin AA. Mitochondria-targeted drugs. Current Molecular Pharmacology. 2019;12(3):202-14.
38. Del Campo A, Valenzuela R, Videla LA, Zuniga-Hernandez J. Cellular functional, protective or damaging responses associated with different redox imbalance intensities: a comprehensive review. Current Medicinal Chemistry. 2023;30(34):3927-39.
39. Sirbiladze G, Sikharulidze A. Insufficient Data and Fuzzy Averages. Journal of Applied Mathematics and Informatics. 2001;6(2):76-95.
40. McAleer CW, Long CJ, Elbrecht D, Sasserath T, Bridges LR, Rumsey JW. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Science translational medicine. 2019;11(497):eaav1386.
41. Donnelly J, Berry K, Ulmer JB. Technical and regulatory hurdles for DNA vaccines. International journal for parasitology. 2003;33(5-6):457-67.
42. Almikhlafi M, Karami M, Jana A, Alqurashi T, Majrashi M, Alghamdi B. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Current Neuropharmacology. 2022;21:1165-83.
43. Liang Z, Currais A, Soriano-Castell D, Schubert D, Maher P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacology & therapeutics. 2020:107749.
44. Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants. 2025;14.
45. Li X, Zhao X, Wang J, Xu B, Feng J, Huang W. High-Pressure Microfluidic Homogenization Improves the Stability and Antioxidant Properties of Coenzyme Q10 Nanoliposomes. Biology. 2025;14.
46. Rizzardi N, Liparulo I, Antonelli G, Orsini F, Riva A, Bergamini C. Coenzyme Q10 Phytosome Formulation Improves CoQ10 Bioavailability and Mitochondrial Functionality in Cultured Cells. Antioxidants. 2021;10.
47. Xie T, Zhang Z, Feng M, Kong L. Current study on Pyrroloquinoline quinone (PQQ) therapeutic role in neurodegenerative diseases. Molecular biology reports. 2025;52 1:397.
48. Zhang Z, Gao Z, Jia Z. Pyrroloquinoline quinone promotes porcine oocyte in vitro maturation and subsequent embryo development by enhancing lipid metabolism and improving mitochondrial function. Animal Bioscience. 2025;38:1644-56.
49. Hinckley C, Kuryshev Y, Sers A, Barre A, Buisson B, Naik H. Characterization of Vixotrigine, a Broad-Spectrum Voltage-Gated Sodium Channel Blocker. Molecular pharmacology. 2021;99 1:49-59.
50. Ziegler D, Duan R, An G, Thomas J, Nothaft W. A randomized double-blind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. Pain. 2015;156:2013-20.
51. Ito M, Ono K, Hitomi S, Nodai T, Sago T, Yamaguchi K. Prostanoid-dependent spontaneous pain and PAR2-dependent mechanical allodynia following oral mucosal trauma. Molecular Pain. 2017;13.
52. Zhou Y-T, Xu Y, Ren X, Zhang X-F. Inactivation of microglia dampens blood-brain barrier permeability and loss of dopaminergic neurons in paraquat-lesioned mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023:113692.
53. Khayatan D, Razavi SM, Arab Z, Niknejad A, Nouri K, Momtaz S. Protective effects of curcumin against traumatic brain injury. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022;154:113621.
54. Numakawa T, Kajihara R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules. 2025;30.
55. Giannaccini M, Calatayud M, Poggetti A, Corbianco S, Novelli M, Paoli M. Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration. Advanced Healthcare Materials. 2017;6.
56. Vazirizadeh-Mahabadi M, Azimi A, Yarahmadi M, Zarei H, Tahmasbi F, Zarrin A. Metformin’s therapeutic potential in spinal cord injury: a systematic review and meta-analysis on locomotor recovery, neuropathic pain alleviation, and modulation of secondary injury mechanisms. Acta Neurochirurgica. 2025;167.
57. Inyang K, Szabo-Pardi T, Wentworth E, McDougal T, Dussor G, Burton M, . The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacological Research. 2019;139:1.
58. Hakimian J, Minasyan A, Zhe-Ying L, Loureiro M, Beltrand A, Johnston C. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids. PLoS ONE. 2017;12.
59. Watson J, Kim J, Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins & other lipid mediators. 2019;143:106337.
60. Carniglia L, Ramírez D, Durand D, Saba J, Turati J, Caruso C. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators of Inflammation. 2017;2017.
61. Zhang X, Cao Y, Li L, Liu Y, Zhou P, Lai Y, et al. Quercetin targets the Ccl4–Ccr5 axis to relieve neuropathic pain after spinal cord injury. APL Bioengineering. 2025;9.
62. Xu C-Y, Hou B-Y, He P, Peng, Yang X, Yang X-Y, et al. Neuroprotective Effect of Salvianolic Acid A against Diabetic Peripheral Neuropathy through Modulation of Nrf2. Oxidative Medicine and Cellular Longevity. 2020;2020.
63. Singh P, Bansal S, Kuhad A, Kumar A, Chopra K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food & function. 2020.
64. Kabir M, Tabassum N, Uddin ME, Aziz F, Behl T, Mathew B, . Therapeutic Potential of Polyphenols in the Management of Diabetic Neuropathy. Evidence-based Complementary and Alternative Medicine : eCAM. 2021;2021.
65. Chen J, Liu W, Yi H, Hu X, Peng L-Y, Yang F. The Natural Rotenoid Deguelin Ameliorates Diabetic Neuropathy by Decreasing Oxidative Stress and Plasma Glucose Levels in Rats via the Nrf2 Signalling Pathway. Cellular Physiology and Biochemistry. 2018;48:1164-76.
66. Barati S, Yadegari A, Shahmohammadi M, Azami F, Tahmasebi F, Rouhani MR. Curcumin as a promising therapeutic agent for diabetic neuropathy: from molecular mechanisms to functional recovery. Diabetology & Metabolic Syndrome. 2025;17.
67. Menéndez SG, Manucha W. Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health. Current pharmaceutical design. 2024.
68. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. Journal of Neuroimmune Pharmacology. 2017;12:327-39.
69. D’Elia M, Marino C, Celano R, Napolitano E, Colarusso C, Sorrentino R, . Impact of a Formulation Containing Chaga Extract, Coenzyme Q10, and Alpha-Lipoic Acid on Mitochondrial Dysfunction and Oxidative Stress: NMR Metabolomic Insights into Cellular Energy. Antioxidants. 2025;14.
70. Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, . Alpha-lipoic Acid: An Antioxidant with Anti-Aging Properties for Disease Therapy. Current medicinal chemistry. 2024.
71. Ferreira G, McKenna M. l-Carnitine and Acetyl-l-carnitine Roles and Neuroprotection in Developing Brain. Neurochemical Research. 2017;42:1661-75.
72. Traina G. The neurobiology of acetyl-L-carnitine. Frontiers in bioscience. 2016;21:1314-29.
73. Ekundayo B, Adewale O, Obafemi T. Neuroprotective Effects of Folic Acid: A Review. Journal of Dietary Supplements. 2024;22:345-63.
74. Kucha W, Seifu D, Tirsit A, Yigeremu M, Abebe M, Hailu D, . Folate, Vitamin B12, and Homocysteine Levels in Women With Neural Tube Defect-Affected Pregnancy in Addis Ababa, Ethiopia. Frontiers in Nutrition. 2022;9.
75. Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM. Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. International Journal of Molecular Sciences. 2020;21.
76. Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, . Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioactive Materials. 2021;14:61-75.
77. Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, . Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem cell research & therapy. 2021;12(1):297.
78. Goradel NH, Jahangiri S, Negahdari B. Effects of mesenchymal stem cell-derived exosomes on angiogenesis in regenerative medicine. Current Regenerative Medicine Formerly: Recent Patents on Regenerative Medicine. 2017;7(1):46-53.
79. Rabinovsky ED. The multifunctional role of IGF-1 in peripheral nerve regeneration. Neurological research. 2004;26(2):204-10.
80. Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and neuroregenerative effects of GH/IGF1. International journal of molecular sciences. 2017;18(11):2441.
81. Salehpour A, Karimi Z, Zadeh MG, Afshar M, Kameli A, Mooseli F, . Therapeutic potential of mesenchymal stem cell-derived exosomes and miRNAs in neuronal regeneration and rejuvenation in neurological disorders: a mini review. Frontiers in Cellular Neuroscience. 2024;18.
82. Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. International Journal of Molecular Sciences. 2024;25.
83. Zhang X, Zhang Y, Peng X, Yang L, Miao J, Yue Y, . Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cellular and Molecular Neurobiology. 2025;45.
84. Zou J, Yang W, Cui W, Li C, Chiyuan, Ji X, . Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. Journal of Nanobiotechnology. 2023;21.
85. Amalakanti S, Mulpuri RP, Avula VCR. Recent advances in biomaterial design for nerve guidance conduits: a narrative review. Advanced Technology in Neuroscience. 2024;1(1):32-42.
86. Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics. 2022;12(11):4993.
87. Weiss A, Ding Y, Rodriguez M. A literature review on neuron scaffolding for repairing peripheral nerves: Advances, challenges, and future directions. Brain Circulation. 2025:10.4103.
88. Ghosh S, Dhiman M, Chauhan S, Roy P, Lahiri D. Dual Functional Electroconductive Biofortified Electrospun Scaffold Functionalized With MWCNTs and Bacopa Monnieri for Accelerated Peripheral Nerve Regeneration. Small. 2025.
89. Zheng C, Yang Z, Chen S, Zhang F, Rao Z, Zhao C, . Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics. 2021;11:2917-31.
90. Najafabadi SS, Karizmeh MS, Rafienia M, Kazemi M, Dastjerdi HA, Bahramian H,. Bioactive aligned PCL/CQD/Moringa nanofiber conduits accelerate peripheral nerve regeneration: in vitro and in vivo breakthroughs in sciatic nerve repair. Biomaterials science. 2025.
91. Milbreta U, Nguyen L, Diao H, Lin J, Wu W, Sun C, . Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury. ACS biomaterials science & engineering. 2016;2 8:1319-29.
92. Entekhabi E, Nazarpak MH, Shafieian M, Mohammadi H, Firouzi M, Hassannejad Z. Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun PCL nanofibers for peripheral nerve regeneration. Journal of biomedical materials research Part A. 2020.
93. Poongodi R, Chen Y-L, Yang T, Huang Y-H, Yang K, Lin H-C, . Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. International Journal of Molecular Sciences. 2021;22.
94. Taisescu O, Dinescu V, Rotaru-Zavaleanu A, Gresita A, Hadjiargyrou M. Hydrogels for Peripheral Nerve Repair: Emerging Materials and Therapeutic Applications. Gels. 2025;11.
95. Xia B, Lv Y. Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. Materials science & engineering C, Materials for biological applications. 2018;82:253-64.
96. Viezuina D-M, Musa I, Aldea M, Matache I-M, Zavaleanu A-DR, Gresita A, . Gelatin-Based Hydrogels for Peripheral Nerve Regeneration: A Multifunctional Vehicle for Cellular, Molecular, and Pharmacological Therapy. Gels. 2025;11.
97. Nonaka C, Sampaio G, De Aragão França LS, Cavalcante B, Silva K, Khouri R, . Therapeutic miR-21 Silencing Reduces Cardiac Fibrosis and Modulates Inflammatory Response in Chronic Chagas Disease. International Journal of Molecular Sciences. 2021;22.
98. Hasan A, Ardizzone A, Giosa D, Scuderi S, Calcaterra E, Esposito E, . The Therapeutic Potential of MicroRNA-21 in the Treatment of Spinal Cord Injury. Current Issues in Molecular Biology. 2025;47.
99. Li Y, Chen X, Jin R, Chen L, Dang M, Cao H,. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Science Advances. 2021;7.
100. Wang Z, Liu F, Wei M, Qiu Y, Chao, Shen L. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. Journal of Neuroinflammation. 2018;15.
101. Yin X, Harmancey R, McPherson D, Kim H, Huang S. Liposome-Based Carriers for CRISPR Genome Editing. International Journal of Molecular Sciences. 2023;24.
102. Zhang Y, Xu H, Chen S, Sun H. Electroacupuncture Regulates Endoplasmic Reticulum Stress and Ameliorates Neuronal Injury in Rats with Acute Ischemic Stroke. Evidence-based Complementary and Alternative Medicine : eCAM. 2021;2021.
103. Sun X, Liu H, Sun Z, Zhang B, Wang X, Liu T. Acupuncture protects against cerebral ischemia–reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis. Molecular Medicine. 2020;26.
104. Tian M-Y, Yang Y-D, Qin W-T, Liu B-N, Mou F-F, Zhu J. Electroacupuncture Promotes Nerve Regeneration and Functional Recovery Through Regulating lncRNA GAS5 Targeting miR-21 After Sciatic Nerve Injury. Molecular Neurobiology. 2023;61:935-49.
105. Chen T, Liu N, Liu J, Zhang X, Huang Z, Zang Y. Gua Sha, a press-stroke treatment of the skin, boosts the immune response to intradermal vaccination. PeerJ. 2016;4.
106. Ryter S. Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants. 2022;11.
107. Funes S, Ríos M, Fernández-Fierro A, Covián C, Bueno S, Riedel C. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Frontiers in Immunology. 2020;11.
108. Gozani S. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain. Journal of Pain Research. 2016;9:469-79.
109. Johnson M. Resolving Long-Standing Uncertainty about the Clinical Efficacy of Transcutaneous Electrical Nerve Stimulation (TENS) to Relieve Pain: A Comprehensive Review of Factors Influencing Outcome. Medicina. 2021;57.
110. Morcillo-Muñoz Y, Sánchez-Guarnido A, Calzón-Fernández S, Baena-Parejo MI. Multimodal Chronic Pain Therapy for Adults via Smartphone: Randomized Controlled Clinical Trial. Journal of Medical Internet Research. 2022;24(5):e36114.
111. Kristjansdottir Ó, Fors E, Eide E, Finset A, Stensrud T, Van Dulmen S, . A Smartphone-Based Intervention With Diaries and Therapist-Feedback to Reduce Catastrophizing and Increase Functioning in Women With Chronic Widespread Pain: Randomized Controlled Trial. Journal of Medical Internet Research. 2013;15(1):e5.
112. Kristjansdottir Ó, Fors E, Eide E, Finset A, Stensrud T, Van Dulmen S. A Smartphone-Based Intervention With Diaries and Therapist Feedback to Reduce Catastrophizing and Increase Functioning in Women With Chronic Widespread Pain. Part 2: 11-month Follow-up Results of a Randomized Trial. Journal of Medical Internet Research. 2013;15(3).
113. De Ciuceis C, Rizzoni D, Palatini P. Microcirculation and Physical Exercise In Hypertension. Hypertension. 2023.
114. Grevendonk L, Connell N, McCrum C, Fealy C, Bilet L, Bruls Y. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nature Communications. 2021;12.
115. Ponirakis G, Azmi S, Ferdousi M, Petropoulos I, Marshall A, Ammori B. The Impact of Bariatric Surgery on Neuropathic Pain and on Objective Markers of Neuropathy. 2016;2016.
116. Kerver G, Bond D, Crosby R, Cao L, Engel S, Mitchell. Pain is adversely related to weight loss maintenance following bariatric surgery. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2021.
117. Azmi S, Ferdousi M, Liu Y, Adam S, Iqbal Z, Dhage S. Bariatric surgery leads to an improvement in small nerve fibre damage in subjects with obesity. International Journal of Obesity. 2021;45:631-8.
118. Alemrajabi M, Raissi G, Sajadi S, Ahadi T, Madani S, Mansouri K. Effects of weight loss after bariatric surgery on the median and ulnar nerves conduction studies. American journal of surgery. 2022.
119. Reynolds E, Watanabe M, Banerjee M, Chant E, Villegas-Umana E, Elafros. The effect of surgical weight loss on diabetes complications in individuals with class II/III obesity. Diabetologia. 2023;66:1192-207.
120. Askarpour M, Khani D, Sheikhi A, Ghaedi E, Alizadeh S. Effect of Bariatric Surgery on Serum Inflammatory Factors of Obese Patients: a Systematic Review and Meta-Analysis. Obesity Surgery. 2019:1-17.
121. Fachim H, Iqbal Z, Gibson J, Baricevic-Jones I, Campbell A, Geary. Relationship between the Plasma Proteome and Changes in Inflammatory Markers after Bariatric Surgery. Cells. 2021;10(10):2798.