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R e s e a r c h  H i g h l i g h t s  

This work proposed a new analytical approach for solving a famous model from mathematical 

physics, namely, advanced Lorenz system. The method combines the Natural transform and 

Homotopy analysis method, and it’s have been suggested for the solution of various kinds for 

the systems of nonlinear delay differntial equations (DDEs). This technique generates solution 

in a polynomial series, where the modification of He’s polynomial is successfully derived for 

the computions of nonlinear functions of the Lorenz system. By choosing an optimal value of 

auxiliary parameters the more precise approximation of the model is achieved at a maximum 

of  three iterational number of terms. Some figures are used to demonstrate the accuracy of the 

result based on the residual error function. Therefore, the approach gives rise to an easy and 

straightforward means of solving these models analytically. Hence, it can be used in finding 

solutions to other forms of nonlinear problems. 

Keywords:- Natural Transform, HomotopyAnalysis Method, He's Polynomial, Advanced, 

 Lorenz System. 

___________________________________________________________________________  

G r a p h i c a l  A b s t r a c t  
 

 

___________________________________________________________________________  

 
R e s ear ch  Ob j e c t i v es   

Delay differential equations rise in numerous fields in applied sciences and is very significant 

in the mathematical modelling of problems from real-life phenomena. Several problems from 

various fields of studies contain a delay element. The few of such include the biological species 

living together [1], the dynamics model of prey-predator which gives rise to delayed Volterra 

integro-differential equations [2] and the problems in population dynamics lead to the 

formation of delay logistic equation [3]. Partly due to the nature of the infinite-dimensional 

state they possess, methods of solving ODEs are not generally applied to DDEs. Therefore, the 
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analytical solutions of these models are hardly ever available. Hence, they are mostly solved 

by numerical methods. In this research, an efficient analytical approach is applied to solve a 

model from mathematical physics namely the Advanced Lorenz system. This approach is 

developed in [4] for an efficient analytical approximation of different forms of the systems of 

nonlinear retarded delay differential equations (RDDEs). Therefore, the aim here is to find a 

better approximation analytically of this model using the proposed technique.  

 

M e th o d o l o g y  

The present work focus to obtain a better analytical approximation for Advanced Lorenz 

system model by using the approach developed in [4] for the systems of nonlinear RDDEs. 

This technique is  from the combinational form of Natural transform (NT) and Homotopy 

analysis method (HAM) where the modification of He’s polynomial is successfully derived for 

the computions of nonlinear functions. This technique  provides solutions to various forms of 

nonlinear systems of RDDEs in a polynomial series that converged rapidly to an exact or 

approximate solutions using a maximum of three iteratioal numbers of terms.  The idea here is 

use the Natural transform as a linear operator which is applied to obtain the simplified form of 

the linear term of such model where the concept HAM is used to construct the generating 

function for the computation of iterational terms. Lastly, the modified He’s polynomial is 

defined for the calculating the nonlinear functions in the generating function constructed. 

 

R e su l ts   

Advanced Lorenz model is introduced by Xiao-hong et al. [5] and it is an advancement of the 

model proposed by Lorenz in [6] for atmospheric convection. So, according to Ansari and Dasi 

[7] the system of this model can be obtained as follows. 

𝑥1
′ (𝑡) = 20[𝑥2(𝑡) − 𝑥1(𝑡)] + 3𝑥1(𝑡)(𝑡 − 𝜏) 

 𝑥2
′ (𝑡) = 14𝑥1(𝑡) +

53

5
𝑥2(𝑡) − 𝑥1(𝑡)𝑥3(𝑡)     (1)  

𝑥3
′ (𝑡) = 𝑥1

2(𝑡) −
14

5
𝑥3(𝑡),                         

with initial condition 

𝑥1(0) = −20,     𝑥2(0) = 8,      𝑥3(0) = 20 

To find the approximation for the system in Eq. (1) based on the proposed technique, The NT 

of Equation should be first taking, and then by making the further simplification  using the 

given initial condition the simplified form of the model is obtained as   
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ℕ+[𝑥1(𝑡)] +
20

𝑠
+

20

𝑠
[𝑥1(𝑡) − 𝑥2(𝑡)] −

3𝑢

3
ℕ+[𝑥1(𝑡 − 𝜏)] = 0       

ℕ+[𝑥2(𝑡)] −
8

𝑠
−

14𝑢

𝑠
ℕ+[𝑥1(𝑡)] −

53

5𝑠
ℕ+[𝑥2(𝑡)] +

𝑢

𝑠
ℕ+[𝑥1(𝑡)𝑥2(𝑡)] = 0    (2)  

ℕ+[𝑥3(𝑡)] −
20

𝑠
+

14𝑢

5𝑠
ℕ+[𝑥3(𝑡)] −

𝑢

𝑠
 ℕ+[𝑥1

2(𝑡)] = 0                      

So, by following the procedure in [4] the recursive relation of the model can be obtained as 

𝑥1,𝑚(𝑡) = (𝜒𝑚 + ℎ1)𝑥1,𝑚−1(𝑡) + ℎ1(1 − 𝜒𝑚)ℕ− [
20

𝑠
] + ℎ1ℕ− {

𝑢

𝑠
ℕ+[𝑅1(𝑥1,𝑚−1, 𝑥2,𝑚−1)]} 

𝑥2,𝑚(𝑡) = (𝜒𝑚 + ℎ2)𝑥2,𝑚−1(𝑡) − ℎ2(1 − 𝜒𝑚)ℕ− [
8

𝑠
] − ℎ2ℕ− {

𝑢

𝑠
ℕ+[𝑅2(𝑥1,𝑚−1, 𝑥2,𝑚−1) +

                         𝐻2,𝑚−1(𝑥1,1𝑥3,1, . . 𝑥1,𝑁𝑥3,𝑁)]}              (3) 

𝑥3,𝑚(𝑡) = (𝜒𝑚 + ℎ3)𝑥3,𝑚−1(𝑡) − ℎ3(1 − 𝜒𝑚)ℕ− [
20

𝑠
] + ℎ3ℕ− {

𝑢

𝑠
ℕ+ [𝑅3 (𝑥3,𝑚−1(𝑡)) +

𝐻3,𝑚−1(𝑥1,1(𝑡), 𝑥1,2(𝑡), . . 𝑥1,𝑁(𝑡))]}      𝑚 ≥ 1,  

where the nonlinear functions 𝑥1(𝑡)𝑥2(𝑡) and 𝑥1
2(𝑡) are respectively calculated as the series 

of modified He’s polynomials defined as  

𝐻2,𝑚(𝑥1,1𝑥3,1, . . 𝑥1,𝑁𝑥3,𝑁) =
1

𝑚!

𝜕𝑚

𝜕𝑞𝑚
𝐹2 (∑ 𝑞𝑝 (𝑥1,𝑝(𝑡), 𝑥2,𝑝(𝑡))

𝑚

𝑝=0

)                           

and  

𝐻3,𝑚(𝑥1,1(𝑡), 𝑥1,2(𝑡), . . 𝑥1,𝑁(𝑡)) =
1

𝑚!

𝜕𝑚

𝜕𝑞𝑚
𝐹3 (∑ 𝑥1,𝑝(𝑡)𝑞𝑝

𝑚

𝑝=0

).                                    

 

F i n d i n g s  

From the given intial condition the intial approximation can be chosen as  

                            𝑥1,0(𝑡) = −20,   𝑥2,0(𝑡) = 8 and 𝑥3,0(𝑡) = 20 

So, from Eq. (3) at ℎ1 = −0.997 and ℎ2 = ℎ3 = −1, the third-order approximate solution of 

this model is given as follows:- 

𝑥1(𝑡) ≈ ∑ 𝑥1,𝑚

3

𝑚=0

= 32647.5𝑡3 − 2182.643𝑡2 + 498.4977𝑡 − 20 
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𝑥2(𝑡) ≈ ∑ 𝑥2,𝑚

3

𝑚=0

= −112116.777𝑡3 + 3029.94𝑡2 + 204.8𝑡 + 8 

𝑥3(𝑡) ≈ ∑ 𝑥3,𝑚

3

𝑚=0

= 122476.17𝑡3 − 1045.6𝑡2 + 498.4977𝑡 + 20 

Therefore, based on the result obtained the most important thing about the proposed method is 

to make a good choose of the  initial approximation, and this will accelerate the convergent for 

the series solutions and also determine the best set of function to be used, and to have better 

approximation  from few numbers of iterations. 
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