A* Algorithm for Shortest Path in Robot Motion

Hameedah Sahib Hasan
Ministry of Higher Education and Scientific Research University
Al-Furat Al-Awsat Technical University
Iraq
hameedah211ou@gmail.com

*Corresponding Author email: hameedah211ou@gmail.com

Submission: 07 April 2021
Revised: 10 May 2021
Accepted: 23 May 2021

Peer-review under responsibility of 5th ASIA International Multidisciplinary Conference 2021 (Online)
Scientific Committee
http://connectingasia.org/scientific-committee/
© 2021 Published by Readers Insight Publisher,
Office # 6, First Floor, A & K Plaza, Near D Watson, F-10 Markaz, Islamabad. Pakistan,
editor@readersinsight.net
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
A B S T R A C T

Mobile robot motion in real-time has many challenges in terms of reaching the exact destination and avoid obstacles. In this work, A* algorithm has been selected to show the robot motion in simulation through Matlab software. Different destinations are selected with several obstacles. A* algorithm shows the ability to achieve the shortest path distance for mobile robot motion as well to avoid different obstacles. Thus, the A* algorithm can be an attractive choice to achieve the best shortest path distance for Mobile robot motion.

Keywords: Mobile Robot, Obstacles, A* Algorithm

Research Objectives

This paper aims to give an overview of the A* algorithm and to show the robot’s motion to avoid different obstacles. A* algorithm is one of the famous algorithms that is used to find the shortest path for robot motion. Several points required to design the algorithms for robot motion, first is to make the motion is easy and feasible as it related to arrival time, the second to avoid static obstacles, third to successfully planned the trajectories of other robots (1). The A* algorithm is based on a heuristic approach. The use of the heuristic variable H(s) is to assist the algorithm determination. It can achieve better performance by using it to guide its search where the recent node becomes a first selection for searching late (1). Besides, the efficiency of the A* algorithm can improve by ignored the irrelevant nodes (2). A* is introduced in 1968 as an extension of Dijkstra’s algorithm. it can minimize the complexity of calculation compared with Dijkstra’s algorithm and can solve the issue related to the increased number of nodes which is affected to the efficiency of Dijkstra’s algorithm and led to decreases it’s significant (3)(4).

Results

Robot motion in navigation systems has an important role related to finding minimum travel distance among multi-distentions. To achieve this goal several algorithms are used to find the shortest distance (5). Fig. 1 shows the use of the A* algorithm in free space, the robot motion starts from point (1, 1) to multi stations. The total distance achieved is 8.242 m. The robot motion here considers no obstacle. While Fig. 2 shows several obstacles are located at four positions. The robot motion starts from point (1,1) to point (6, 6), The robot reaches multi-destination and the total distance is 8.829 m.
Fig. 1. Mobile robot motion using A* Algorithm with free workspace

Fig. 2. Mobile robot motion using A* Algorithm with five obstacles

Conclusion

In this work, the A* algorithm has been selected to show different robot motions. From the result, the traveling distance obtained through simulation is depending on the obstacles distributed in the traveling area. As well it shows that the A* algorithm choice the path with a minimum traveling distance.

Acknowledgement

State any acknowledgement if it is required.

References

