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A b s t r a c t  

With the recent rollout of smart meters, huge amount of data can be generated on hourly and 

daily basis. Researchers and industry persons can leverage from this big data to make intelligent 

decisions via deep learning (DL) algorithms. However, the performance of DL algorithms are 

heavily dependent on the proper selection of parameters. If the hyperparameters are poorly 

selected, they usually lead to suboptimal results. Traditional approaches include a manual 

setting of parameters by trial and error methods which is time consuming and difficult process.  

In this paper, a Bayesian approach based on acquisition is presented to automatic selection of 

optimal parameters based on provided data. The acquisition function was established to search 

for the best parameter from the input space and evaluate the next points based on past 

observations. The tuning process identifies the best model parameters by iterating the objective 

function and minimizing the loss for optimizable variables such as learning rate and Hidden 

layersize. To validate the presented approach, we conducted a case study on real-life energy 

management datasets while constructing a deep learning model on MATLAB platform. A 

performance comparison was drawn with random parameters and optimal parameters selected 

by presented approach. The comparison results illustrate that the presented approach is 

effective as it brings a notable improvement in the performance of learning algorithm. 

Keywords: Optimal Parameter Selection, Energy Management Datasets, Automatic Tuning, Deep 

Learning Algorithms 

___________________________________________________________________________  

 
G r a p h i c a l  R e s u l t s  
 

  
Fig: 1(a) Fig: 1(b) 

 

Fig: 1(a): Acquisition function plot with optimizable parameters such as hidden layer size and 

learning rate. The objective is to find the next search point in iterative space. One could 
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arbitrarily pick the points in optimization, but this is a complicated and time-consuming 

process. 

Fig: 1(b): Objective function plot to determines the best feasible parameters. It indicates the 

measured and predicted function values against the number of function evaluations 

______________________________________________________________ 

 

R e s ear ch  Ob j e c t i v es  

One of the key challenges in the implementation of deep learning (DL) algorithms is the correct 

settings of its parameters to achieve optimal results. The need for tuning DL  parameters is 

ubiquitous in engineering industry as they heavily influence the performance of learning 

algorithm. In practice, the process of finding good parameters is computationally expensive 

and complex task. The existing approaches (1–3) include a manual search of parameters which 

is time-consuming and complex process. The methods like random search (4), grid search (5), 

evolutionary search (6) and guided search (7)  are used heavily in the past. However, these 

methods are relatively inefficient for the automatic selection of parameters as they do not 

choose the next hyperparameters based on previous results. Additionally, these methods need 

a significant amount of time for calculation of parameters which is not desirable in practical 

applications. In this study, a practical approach based on Bayesian optimization and acquisition 

function was established for the automatic selection of DL parameters. The study aimed at 

identifying the best feasible parameters while conducting the experiments with real-life energy 

management datasets.  

 

M e th o d o l o g y  

This study begins with the construction of objective function in MATLAB environment for 

hyper tuning of parameters. Two key parameters i.e hidden layers size and the learning rate are 

considered during experiments as they mainly influence the performance of the algorithm. The 

tuning process follows the concept of Bayesian optimization based on acquisition function.  

The prior distribution of parameters was formed during the optimization process and 

acquisition function utilizes this distribution to systematically decide the new set of 

hyperparameter configurations. To determine the best parameters, K-fold cross-validation (8) 

was constructed to determine the loss at each iteration. The goal of hypertuning proocess is to 

obtain the set of hyperparameter values that can give the lowest Root Mean Square Error 

(RMSE) for the deep learning model. The parameters with the lowest  cross-validation loss are 

considered as optimal parameters and they are selected to train the final model. To validate the 

presented approach, a typical deep learning model was constructed in a MATLAB environment 
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and performance is compared with random and tuned parameters. We theoretically analyze our 

method by using three real-world datasets. 

 

R e su l ts   

The results obtained from the presented approach are tabulated in Table 1. A deep learning 

model is trained with random and tuned parameters and performance is measured in terms of  

RMSE.  For a fair comparison, we used 4 K-fold cross-validation and iterated the results for 4 

times. The average of these results concluded that the proposed tuning method achieved better 

results compared to manual tuning. The RMSE is lower on all three datasets. Additionally, we 

noticed a reasonable average percentage improvement for Dataset 1 (Home A), Dataset 2 

(Home B) and Dataset 3 (Home C) with RMSE  of 32.34 %, 47.55 %, 79.69 %  respectively. 

Table 1: Comparison of performance with random parameters and presented approach 

Dataset RMSE without hyper 

tuning of parameters 

RMSE with hyper 

tuning of 

parameters 

*RMSE 

Improvement        

(%) 

Home A Iteration RMSE Iteration RMSE  

Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

35.66 

        32.43 

        32.50 

       32.65 

Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

32.28 

       32.27 

       32.30 

       32.29 

34.75 

31.43 

31.51 

31.66 

       Avg: 

       33.31 

         Avg: 

       32.28 

Avg: 

32.34 

Home B Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

 

46.92 

        48.03 

        52.06 

        47.05 

Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

46.81 

        47.10 

       47.56 

       46.76 

45.92 

47.05 

51.16 

46.06 

Avg: 

       48.51 

 

 

Avg: 

      47.06 

Avg: 

47.55 

Home C Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

       79.29 

84.07 

77.90 

81.27 

Iteration:1 

Iteration:2 

Iteration:3 

Iteration:4 

       74.81 

       72.01 

       77.41 

       79.10 

78.35 

83.21 

76.91 

80.30 
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 Avg: 

80.63 

 

 

       Avg: 

       75.82 

Avg: 

79.69 

*RMSE: Root Mean Square Error 

*Avg: Average 

*RMSE improvement=
𝐑𝐌𝐒𝐄  𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐇𝐲𝐩𝐞𝐫𝐭𝐮𝐧𝐢𝐧𝐠 − 𝐑𝐌𝐒𝐄 𝐏𝐫𝐨𝐩𝐨𝐬𝐞𝐝 𝐌𝐞𝐭𝐡𝐨𝐝

𝐑𝐌𝐒𝐄  𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐇𝐲𝐩𝐞𝐫𝐭𝐮𝐧𝐢𝐧𝐠
 x 100 

 

F i n d i n g s  

The results of three real-world datasets validate that the presented scheme is statistically 

significant compared to the manual tuning of parameters. The investigation has lead to several 

benefits. For instance, it can: 

• reduce the human intervention required for the implementation of DL algorithms. In 

power engineering applications, this is particularly crucial. 

• enhance the accuracy of DL algorithms by iteratively finding the globally optimal 

parameters. 

• offers the opportunity to automate the deep learning parameters in real-time systems as 

it achieves a good set of parameters in a small number of experiments. 
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