Molecular Epidemiology of Carbapenemase and Extended-Spectrum Beta-Lactamase Genes in Multidrug-Resistant Pseudomonas aeruginosa and Klebsiella pneumoniae Isolated from Nosocomial Wound Infections
Main Article Content
Abstract
The global spread of carbapenemase and extended-spectrum beta-lactamase (ESBL) genes in Pseudomonas aeruginosa and Klebsiella pneumoniae poses a significant threat to healthcare systems. This study aimed to characterize the molecular epidemiology of these resistance determinants in wound infection isolates. Over six months (March-August 2023), 112 non-duplicate Gram-negative isolates (65 P. aeruginosa and 47 K. pneumoniae) were collected from wound infections at a tertiary care hospital. Antimicrobial susceptibility was determined by disk diffusion and broth microdilution. Carbapenemase production was confirmed by the modified carbapenem inactivation method (mCIM). Genotypic characterization of resistance genes (blaNDM-1, blaKPC-2, blaOXA-48, blaVIM, blaIMP, blaTEM, blaSHV, blaOXA-1) was performed via multiplex PCR. Carbapenem resistance was found in 69.6% of isolates, with K. pneumoniae exhibiting higher resistance (76.6%) than P. aeruginosa (64.6%). The blaNDM-1 gene was predominant (47.4%), particularly in K. pneumoniae (58.3%). ESBL genes, especially blaTEM (71.8%) and blaSHV (44.9%), were also prevalent. Notably, 52.6% of carbapenem-resistant isolates co-harbored multiple resistance genes, with blaNDM-1 + blaTEM being the most common combination (25.6%). The study highlights the alarming prevalence of carbapenemase and ESBL genes in nosocomial wound isolates, with blaNDM-1 emerging as the dominant resistance mechanism. The high rate of genetic co-carriage underlines the emergence of pan-drug-resistant phenotypes, emphasizing the urgent need for molecular surveillance and enhanced infection control in hospital settings.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1. Lynch III JP, Clark NM, Zhanel GG. Escalating antimicrobial resistance among Enterobacteriaceae: focus on carbapenemases. Expert Opinion on Pharmacotherapy. 2021;22(11):1455-74.
2. Leroux P, Bornet C, Bolla JM, Cohen A. Challenges of Carbapenem-Resistant Enterobacteriaceae in the Development of New β-Lactamase Inhibitors and Antibiotics. Antibiotics. 2025;14(6):587.
3. Bilal H, Hameed F, Khan MA, Khan S, Yang X, Rehman TU. Detection of mcr-1 gene in extended-spectrum β-lactamase-producing Klebsiella pneumoniae from human urine samples in Pakistan. Jundishapur Journal of Microbiology. 2020;13(4):1-6.
4. Abid R, Khan M, Siddique N, Khan SW, Khan RU, Zahoor M. Novel chiral phthalimides: Antimicrobial evaluation and docking study against Acinetobacter baumannii's OmpA protein. Comput Biol Med. 2024; 182:109099.
5. Bouza E. The role of new carbapenem combinations in the treatment of multidrug-resistant Gram-negative infections. Journal of Antimicrobial Chemotherapy. 2021;76(Supplement_4):iv38-45.
6. Bilal H, Khan MN, Khan S, Shafiq M, Fang W, Khan RU, Rahman MU, Li X, Lv QL, Xu B. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Computational and Structural Biotechnology Journal. 2025;27:423-439.
7. Macesic N, Uhlemann AC, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. The Lancet. 2025;405(10474):257-72.
8. Jean SS, Harnod D, Hsueh PR. Global threat of carbapenem-resistant gram-negative bacteria. Front Cell Infect Microbiol. 2022;12:823684.
9. Alvisi G, Curtoni A, Fonnesu R, Piazza A, Signoretto C, Piccinini G. Epidemiology and genetic traits of carbapenemase-producing enterobacterales: A global threat to human health. Antibiotics (Basel). 2025;14(2):141.
10. Khong WX, Xia E, Marimuthu K, Xu W, Teo YY, Tan E. Local transmission and global dissemination of New Delhi Metallo-Beta-Lactamase (NDM): a whole genome analysis. BMC Genomics. 2016;17(1):452.
11. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VH, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of molecular biology. 2019;431(18):3472-500.
12. Hirvonen VH, Spencer J, Van Der Kamp MW. Antimicrobial resistance conferred by OXA-48 β-lactamases: towards a detailed mechanistic understanding. Antimicrobial agents and chemotherapy. 2021;65(6):10-128.
13. Adibi M, Javanmardi K, Saeed NA, Mobasher MA, Jokar J, Ghasemian A, Rahimian N, Hekmat AS. Infected burn wound healing using Hydroxy-propyl-methyl cellulose gel containing bacteriophages against Pseudomonas aeruginosa and Klebsiella pneumoniae. Iranian Journal of Microbiology. 2025;17(1):69.
14. Azimi L, Alaghehbandan R, Asadian M, Alinejad F, Lari AR. Multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae circulation in a burn hospital, Tehran, Iran. GMS hygiene and infection control. 2019;14:Doc01.
15. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Wayne, PA: CLSI; 2023.
16. Li J, Li C, Cai X, Shi J, Feng L, Tang K, Tong Y, Li Y. Performance of modified carbapenem inactivation method and inhibitor-based combined disk test in the detection and distinguishing of carbapenemase producing Enterobacteriaceae. Annals of Translational Medicine. 2019;7(20):566.
17. Haider MH, McHugh TD, Roulston K, Arruda LB, Sadouki Z, Riaz S. Detection of carbapenemases bla OXA48-bla KPC-bla NDM-bla VIM and extended-spectrum-β-lactamase bla OXA1-bla SHV-bla TEM genes in Gram-negative bacterial isolates from ICU burns patients. Annals of Clinical Microbiology and Antimicrobials. 2022;21(1):18.
18. Aljohni MS, Harun-Ur-Rashid M, Selim S. Emerging threats: Antimicrobial resistance in extended-spectrum beta-lactamase and carbapenem-resistant Escherichia coli. Microbial Pathogenesis. 2025:107275.
19. Ali F, Shakeela Q, Ahmed S, Khan RU, Jamil J, Shah PT, Afsar T, Almajwal A, Razak S, Bilal H. Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients. Cellular and Molecular Biology. 2024;70(12):166-74.
20. Hameed F, Khan MA, Bilal H, Muhammad H, Tayyab UR. Detection of MCR-1 gene in multiple drug resistant escherichia coli and klebsiella pneumoniae in human clinical samples from Peshawar, Pakistan. Combinatorial Chemistry & High Throughput Screening. 2021;24(5):737-42.
21. Ullah S, Shujaat N, Khan RU, Khan RA, Bilal H, Khan M, et al. Ruellia nudiflora-mediated biological synthesis of silver nanoparticles and their potential antioxidant, antifungal and antibacterial applications against selected multidrug resistant bacteria. Pak-Euro J Med Life Sci. 2021;4(4):291-302.
22. Arulappen AL, Khan AH, Hasan SS, Harun SN, Chow TS, Basil M. The Correlation between Antibiotic Usage and Antibiotic Resistance: A Three Year Retrospective Study. Front Cell Infect Microbiol. 2025;15:1608921.
23. Zhang Y, Xu G, Miao F, Huang W, Wang H, Wang X. Insights into the epidemiology, risk factors, and clinical outcomes of carbapenem-resistant Acinetobacter baumannii infections in critically ill children. Front Public Health. 2023;11:1282413.
24. Zhang X, Li F, Cui S, Mao L, Li X, Awan F. Prevalence and distribution characteristics of blaKPC-2 and blaNDM-1 genes in Klebsiella pneumoniae. Infect Drug Resist. 2020:2901-10.
25. Srivastava D, Bajpai S, Singh S, Singh MR. Molecular characterization of blaoxa-48 and blandm-1 resistant genes in carbapenem resistance Klebsiella pneumonia clinical isolates: a cross sectional study. Biochem Cell Arch. 2024;24(1):10-51470.
26. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-75.
27. Ghotaslou R, Salahi B, Naderi G, Alizadeh N. High frequency of blaOXA-48like producing Klebsiella pneumoniae isolated from nosocomial infection in Azerbaijan, Iran. Infect Chemother. 2023;55(1):90.
28. Zhai J, Yan R, Cao X, Liu C, Li F, Shen H. Epidemiological Insights into Global metallo-β-lactamases-Producing Pseudomonas aeruginosa: A Comprehensive Analysis Based on NCBI Database. J Glob Antimicrob Resist. 2025;44:455-463.
29. Gajic I, Tomic N, Lukovic B, Jovicevic M, Kekic D, Petrovic M. A comprehensive overview of antibacterial agents for combating Multidrug-Resistant bacteria: the current landscape, development, future opportunities, and challenges. Antibiotics (Basel). 2025;14(3):221.
30. Javed H, Ejaz H, Zafar A, Rathore AW, Ul Haq I. Metallo-beta-lactamase producing Escherichia coli and Klebsiella pneumoniae: a rising threat for hospitalized children. J Pak Med Assoc. 2016;66(9):1068-1072
31. Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053-68