Molecular Docking of MCL-1 Protein with Various Inhibitors for Cancer Treatment Research Article

Main Article Content

Sahar Wajahat
Uzma Jabeen

Abstract

Myeloid cell leukemia-1 (MCL-1), belonging to Bcl-2 protein family, regulates apoptosis and is frequently overexpressed in cancer cells, making it a potential target for anti-cancer therapies. In this study, Insilico drug design is employed to screen ten FDA approved drugs with various therapeutic applications, followed by molecular docking of four promising compounds exhibiting good ADME properties and no carcinogenicity and mutagenicity, to identify potential MCL-1 inhibitors with improved efficacy, reduced resistance, and minimal toxicity. Our analysis revealed strong binding affinities of drugs, cyclobenzaprine hydrochloride (-9.3 kcal/mol), miconazole nitrate (-8.4 kcal/mol), donepezil hydrochloride (-8.1 kcal/mol) and dorzolamide (-5.3 kcal/mol) due to significant interactions with the key active site amino acid residues of MCL-1 protein, mainly "hotspot" residue Arg263A, interacting through hydrogen bond. These interactions, crucial for protein activity, suggest a potential novel mechanism for destabilizing and inhibiting MCL-1 activity. Subsequently, suggesting their promising possibility as an effective anti-tumor agent. Overall, our findings suggest these drugs as potential MCL-1 inhibitors for treating tumors, though further experimental validation is required.

Article Details

Section

Research Article

Author Biographies

Sahar Wajahat, Department of Biochemistry, Federal Urdu University of Arts, Science and Technology (FUUAST), 75300, Karachi, Pakistan

Department: Biochemistry (BS)

Uzma Jabeen, Department of Biochemistry, Federal Urdu University of Arts, Science and Technology (FUUAST), 75300, Karachi, Pakistan

Department: Biochemistry (PHD)

How to Cite

 Molecular Docking of MCL-1 Protein with Various Inhibitors for Cancer Treatment: Research Article. (2025). Pak-Euro Journal of Medical and Life Sciences, 8(3), 569-578. https://doi.org/10.31580/ghq8wz60

References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2024;74(3):229-263.

2. Mehanna LE, Boyd JD, Walker CG, Osborne AR, Grady ME, Berron BJ. Functional assessment of migration and adhesion to quantify cancer cell aggression. Soft matter. 2025;21(15):2946-2957.

3. Lossi L. The concept of intrinsic versus extrinsic apoptosis. Biochemical Journal. 2022;479(3):357-384.

4. Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. The FEBS journal. 2022;289(20):6209-34.

5. Thomas CJ, Carvajal V, Barta SK. Targeted Therapies in the Treatment of Mantle Cell Lymphoma. Cancers. 2024;16(10):1937.

6. Liu W, Jiang Z, Wang R, Zhang X, Jiang X, Chen C, Li W. Targeting EGFR-Mcl-1 Axis by Piperlongumine as a Novel Strategy for Non-Small Cell Lung Cancer Therapy. The American journal of Chinese medicine. 2025;53(2):597-619.

7. Takagi S, Nakajima M, Koike S, Takami M, Sugiura Y, Sakata S, Katayama R. Frequent copy number gain of MCL1 is a therapeutic target for osteosarcoma. Oncogene. 2024;44(12):794-804.

8. Dong S, Matossian MD, Yousefi H, Khosla M, Collins-Burow BM, Burow ME, Alahari SK. Targeting Mcl-1 by a small molecule NSC260594 for triple-negative breast cancer therapy. Scientific Reports. 2023;13(1):11843.

9. Cai Y, Li Y, Xu Y, Yang W, Huang M. TCEB3 initiates ovarian cancer apoptosis by mediating ubiquitination and degradation of MCL‐1. The FASEB Journal. 2024;38(8):e23625.

10. Hu X, Ginder GD, Hawkridge A, Hazlehurst L, Li L, Cowart LA, Nkwocha J, Mauro AG, Grant S, Rijal A, Yue Y, Shang S, Sdrimas K, Horimoto K, Salloum FN, Zhou L, Moore Z, Kmieciak M. Src inhibition potentiates MCL-1 antagonist activity in acute myeloid leukemia. Signal Transduction and Targeted Therapy. 2025;10(1):50.

11. Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, Caenepeel S, Hughes P, McIver Z, Mezzi K, Morrow PK. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood reviews. 2020;44:100672.

12. Del Carmen Quintal Bojórquez N, Campos MRS. Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process. Current Cancer Drug Targets. 2023;23(5):333-345.

13. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of cheminformatics. 2011;3(1):33.

14. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010;31(2):455-461.

15. Rescourio G, Dou H, Lo MC, Hughes PE, Caenepeel S, Chow D, Medina JC, Belmontes B, Turcotte S, Yanez E, Li Y, Kelly RC, Meleza C, Whittington D, Huang X, Brown SP, Jones A, Cardozo M, Cheng AC, Sun D, Mallari R, Zancanella M, Yan X, Rew Y, Moody G, Jabri S, González AZ, Houze JB, Wong S, Simonovich SP, Lizarzaburu ME. Discovery and in vivo evaluation of macrocyclic Mcl-1 inhibitors Featuring an α-Hydroxy Phenylacetic acid Pharmacophore or Bioisostere. Journal of Medicinal Chemistry. 2019;62(22):10258-10271.

16. Ravi L, Kannabiran K. A handbook on protein-ligand docking tool: AutoDock 4. Innovare Journal of Medical Sciences. 2016;28-33.

17. Baroroh U, Biotek M, Muscifa ZS, Destiarani W, Rohmatullah FG, Yusuf M. Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indonesian Journal of Computational Biology (IJCB). 2023;2(1):22-30.

18. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017;7(1):42717.

19. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic acids research. 2018;46(W1): W257-W263.

20. Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a “barrier” in cancer treatment: can we target it now?. International Review of Cell and Molecular Biology. 2020;351:23-55.

21. Madushanka A, Moura Jr RT, Verma N, Kraka E. Quantum mechanical assessment of protein–ligand hydrogen bond strength patterns: insights from semiempirical tight-binding and local vibrational mode theory. International Journal of Molecular Sciences. 2023;24(7):6311.

22. Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacology & therapeutics. 2015;145:76-84.

23. Milani M, Byrne DP, Greaves G, Butterworth M, Cohen GM, Eyers PA, Varadarajan S. DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis. Cell death & disease. 2018;8(1):e2552-e2552.

24. Hargreaves D, Carbajo RJ, Bodnarchuk MS, Embrey K, Rawlins PB, Packer M, Degorce SL, Hird AW, Johannes JW, Chiarparin E, Schade M. Design of rigid protein–protein interaction inhibitors enables targeting of undruggable Mcl-1. Proceedings of the National Academy of Sciences. 2023;120(21):e2221967120.

25. Alhammadi SH, Baby B, Antony P, Jobe A, Humaid RS, Alhammadi FJ, Vijayan R. Modeling the binding of anticancer peptides and Mcl-1. International journal of molecular sciences. 2024;25(12):6529.

26. Grdadolnik J, Merzel F, Avbelj F. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proceedings of the National Academy of Sciences. 2017;114(2):322-327.

27. Li F, Zhang M, Liu C, Cheng J, Yang Y, Peng X, Li Z, Cai W, Yu H, Wu J, Guo Y. De novo discovery of a molecular glue–like macrocyclic peptide that induces MCL1 homodimerization. Proceedings of the National Academy of Sciences. 2025;122(13):e2426006122.

28. Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. Journal of hematology & oncology. 2021;14(1):67.

29. Denis C, Sopková-de Oliveira Santos J, Bureau R, Voisin-Chiret AS. Hot-spots of Mcl-1 protein: miniperspective. Journal of medicinal chemistry. 2019;63(3):928-943.

30. Mady A. Development and Characterization of Novel Mcl-1 Inhibitors for Treatment of Cancer (Doctoral dissertation). 2016.

31. Singh K, Senatorov IS, Cheshmehkani A, Karmokar PF, Moniri NH. The skeletal muscle relaxer cyclobenzaprine is a potent non-competitive antagonist of histamine H1 receptors. The Journal of Pharmacology and Experimental Therapeutics. 2022;380(3):202-9.

32. Sullivan GM, Gendreau RM, Gendreau J, Peters P, Peters A, Engels J, Daugherty BL, Vaughn B, Weathers FW, Lederman S. Randomized clinical trial of bedtime sublingual cyclobenzaprine (TNX-102 SL) in military-related PTSD and the role of sleep quality in treatment response. Psychiatry Research. 2021;301:113974.

33. Khan I, Kahwaji CI. Cyclobenzaprine. In StatPearls. StatPearls Publishing. 2023.

34. Regidor PA, Thamkhantho M, Chayachinda C, Palacios S. Miconazole for the treatment of vulvovaginal candidiasis. In vitro, in vivo and clinical results. Review of the literature. Journal of Obstetrics and Gynaecology. 2023;43(1):2195001.

35. Yuan SY, Shiau MY, Ou YC, Huang YC, Chen CC, Cheng CL, Chiu KY, Wang SS, Tsai KJ. Miconazole induces apoptosis via the death receptor 5-dependent and mitochondrial-mediated pathways in human bladder cancer cells. Oncology Reports. 2017;37(6):3606-3616.

36. Larkin HD. First Donepezil Transdermal Patch Approved for Alzheimer Disease. JAMA. 2022;327(17):1642.

37. Arciniegas DB, Almeida EJ, Sander AM, Bogaards JA, Giacino JT, Hammond FM, Harrison-Felix CL, Hart T, Ketchum JM, Mellick DC, Sherer M. Multicenter evaluation of memory remediation in traumatic brain injury with donepezil: a randomized controlled trial. The Journal of Neuropsychiatry and Clinical Neurosciences. 2025;37(2):102-114.

38. Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil beyond Alzheimer's disease? A narrative review of therapeutic potentials of donepezil in different diseases. Iranian Journal of Pharmaceutical Research: IJPR. 2022;21(1):e128408.

39. Pardeshi SR, Gholap AD, Hatvate NT, Gharat KD, Naik JB, Omri A. Advances in dorzolamide hydrochloride delivery: harnessing nanotechnology for enhanced ocular drug delivery in glaucoma management. Discover Nano. 2024;19(1):199.

40. Das D, Nigam E. Resolution of cystoid macular edema by topical dorzolamide in a case of central serous chorioretinopathy: a case report. Sci J Med & Vis Res Foun. 2017;35.

41. Ali BM, Zaitone SA, Shouman SA, Moustafa YM. Dorzolamide synergizes the antitumor activity of mitomycin C against Ehrlich’s carcinoma grown in mice: Role of thioredoxin-interacting protein. Naunyn-Schmiedeberg's archives of pharmacology. 2015;388(12):1271-1282.