Exploring Genetic Determinants of Primary Congenital Glaucoma in Pakistani Cohorts

Review Article

Authors

  • Ammara Saleem Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
  • Usman Hameed DDepartment of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
  • Memoona Idrees Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
  • Muhammad Ansar Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan

DOI:

https://doi.org/10.31580/pjmls.v8i1.3192

Keywords:

CYP1B1, Disease spectrum, Glaucoma, Inherited eye disorder, Pakistani population, Primary congenital glaucoma

Abstract

Glaucoma is the second leading cause of blindness, affecting approximately 65 million people globally. Primary congenital glaucoma (PCG) is an inherited disorder during the development of the eye especially in the anterior chamber angle and trabecular meshwork. It causes irreversible childhood blindness due to an increase in intra-ocular pressure, corneal opacity, and optic nerve damage. PCG is inherited as an autosomal recessive and autosomal dominant form. The three most common genes are Human cytochrome P450 1B1 (CYP1B1), Latent transforming growth factor beta binding protein 2 (LTBP2), and Tunica interna endothelial receptor tyrosine kinase (TEK) have been associated with disease phenotype. The most screened gene for genetic analysis of PCG in Pakistani families is CYP1B1 in the autosomal mode of inheritance. It accounts for 50% of mutations in the affected individuals. Mutations in LTBP2 were reported in families which had not been identified for any mutation in CYP1B1. No data is available in Pakistan for TEK mutations. This review manifests the importance of variant studies to investigate the etiology of disease at a molecular level. It focuses on how family history and consanguineous marriages contribute to the high rate of primary congenital glaucoma in Pakistani families. Many studies will help us to understand the spectrum of PCG in any demographic location and manufacturing diagnostic kits for early detection of PCG in Pakistan. Early diagnosis of PCG and Genetic counseling of families can be a preventive measure for this phenotype.

References

Sarfarazi MJHmg. Recent advances in molecular genetics of glaucomas. 1997;6(10):1667-77.

Schwartz M, Yoles EJCoio. Neuroprotection: a new treatment modality for glaucoma? 2000;11(2):107-11.

Firasat S, Riazuddin SA, Hejtmancik JF, Riazuddin SJMv. Primary congenital glaucoma localizes to chromosome 14q24. 2-24.3 in two consanguineous Pakistani families. 2008;14:1659.

Kaeslin MA, Killer HE, Fuhrer CA, Zeleny N, Huber AR, Neutzner AJPO. Changes to the aqueous humor proteome during glaucoma. 2016;11(10):e0165314.

Quigley HA, Addicks EM, Green WR, Maumenee AJAoo. Optic nerve damage in human glaucoma: II. The site of injury and susceptibility to damage. 1981;99(4):635-49.

Fechtner RD, Weinreb RNJSoo. Mechanisms of optic nerve damage in primary open angle glaucoma. 1994;39(1):23-42.

Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RTJPir, research e. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. 2005;24(1):39-73.

Westerlund E. Clinical and genetic studies on the primary glaucoma diseases: Arnold Busck; 1947.

Anderson JR, Parsons JH. Hydrophthalmia or congenital glaucoma: Cambridge University Press; 2013.

Strouthidis NG, Papadopoulos MJCOR. Clinical evaluation of glaucoma in children. 2013;1:106-12.

Kwon YH, Fingert JH, Kuehn MH, Alward WLJNEJoM. Primary open-angle glaucoma. 2009;360(11):1113-24.

Wright C, Tawfik MA, Waisbourd M, Katz LJJAo. Primary angle‐closure glaucoma: an update. 2016;94(3):217-25.

ALLEN L, Burian HM, Braley AEJAAoO. A New Concept of the Development of theAnterior Chamber Angle: Its Relationship to Developmental Glaucoma and Other Structural Anomalies. 1955;53(6):783-98.

Maumenee AEJTotAOS. The pathogenesis of congenital glaucoma: a new theory. 1958;56:507.

Kupfer C, Kaiser-Kupfer MIJAjoo. Observations on the development of the anterior chamber angle with reference to the pathogenesis of congenital glaucomas. 1979;88(3 Pt 1):424-6.

Anderson DJTotAOS. The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. 1981;79:458.

Rulli E, Quaranta L, Riva I, Poli D, Hollander L, Galli F. Visual field loss and vision-related quality of life in the Italian Primary Open Angle Glaucoma Study. 2018;8(1):1-12.

Faiq M, Sharma R, Dada R, Mohanty K, Saluja D, Dada TJJocgp. Genetic, biochemical and clinical insights into primary congenital glaucoma. 2013;7(2):66.

Badawi AH, Al-Muhaylib AA, Al Owaifeer AM, Al-Essa RS, Al-Shahwan SAJSJoO. Primary congenital glaucoma: An updated review. 2019;33(4):382-8.

Tamçelik N, Atalay E, Bolukbasi S, Çapar O, Ozkok AJIJoO. Demographic features of subjects with congenital glaucoma. 2014;62(5):565.

Ava S, Demirtaş AA, Karahan M, Erdem S, Oral D, Keklikçi UJIO. Genetic analysis of patients with primary congenital glaucoma. 2021;41(7):2565-74.

Reis LM, Tyler RC, Weh E, Hendee KE, Schilter KF, Phillips III JA. Whole exome sequencing identifies multiple diagnoses in congenital glaucoma with systemic anomalies. 2016;90(4):378-82.

Chen H, Howald WN, Juchau MRJDM, Disposition. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes. 2000;28(3):315-22.

Sarfarazi M, Stoilov IJE. Molecular genetics of primary congenital glaucoma. 2000;14(3):422-8.

Zhao Y, Sorenson CM, Sheibani NJJoo, research v. Cytochrome P450 1B1 and primary congenital glaucoma. 2015;10(1):60.

Li N, Zhou Y, Du L, Wei M, Chen XJEer. Overview of Cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. 2011;93(5):572-9.

Lewis CJ, Hedberg-Buenz A, DeLuca AP, Stone EM, Alward WL, Fingert JHJHmg. Primary congenital and developmental glaucomas. 2017;26(R1):R28-R36.

Pan Y, Iwata TJC. Exploring the Genetic Landscape of Childhood Glaucoma. 2024;11(4):454.

Stoilov I, Akarsu AN, Sarfarazi MJHmg. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. 1997;6(4):641-7.

Waryah YM, Iqbal M, Sheikh SA, Baig MA, Narsani AK, Atif M, et al. Two novel variants in CYP1B1 gene: a major contributor of autosomal recessive primary congenital glaucoma with allelic heterogeneity in Pakistani patients. 2019;12(1):8.

Rauf B, Irum B, Kabir F, Firasat S, Naeem MA, Khan SN. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent. 2016;3(1):1-4.

Chitsazian F, Tusi BK, Elahi E, Saroei HA, Sanati MH, Yazdani S. CYP1B1 mutation profile of Iranian primary congenital glaucoma patients and associated haplotypes. 2007;9(3):382-93.

Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA. Null mutations in LTBP2 cause primary congenital glaucoma. 2009;84(5):664-71.

Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N, et al. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. 2009;18(20):3969-77.

Lim S-H, Tran-Viet K-N, Yanovitch TL, Freedman SF, Klemm T, Call W. CYP1B1, MYOC, and LTBP2 mutations in primary congenital glaucoma patients in the United States. 2013;155(3):508-17. e5.

Mohanty K, Tanwar M, Dada R, Dada TJMv. Screening of the LTBP2 gene in a north Indian population with primary congenital glaucoma. 2013;19:78.

Chen X, Chen Y, Fan BJ, Xia M, Wang L, Sun XJMV. Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma. 2016;22:528.

Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. 2016;126(7):2575-87.

Whisenhunt KN, Tompson SW, Bradfield YS, Huang SJ, Stangel N, Higuchi EC. A missense mutation in the intracellular protein kinase domain of TEK causes autosomal dominant PCG and non-ocular features. 2017;58(8):2121-.

Qiao Y, Chen Y, Tan C, Sun X, Chen X, Chen JJFiG. Screening and functional analysis of TEK mutations in Chinese children with primary congenital glaucoma. 2021;12:764509.

Carstens N, Goolam S, Hulley M, Brandenburg J-T, Ramsay M, Williams SEIJE. Exome-based mutation screening in South African children with primary congenital glaucoma. 2023;37(2):362-8.

Chacon‐Camacho OF, Ordaz‐Robles T, Cid‐García MA, Hofmann‐Blancas ME, Ledesma‐Gil J, García‐Huerta MM, et al. TEK gene‐related primary congenital glaucoma: Phenotypic features and mutational spectrum in a Mexican cohort of 10 unrelated families. 2024:e63716.

Muskhelishvili L, Thompson PA, Kusewitt DF, Wang C, Kadlubar FFJJoH, Cytochemistry. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. 2001;49(2):229-36.

Bejjani BA, Stockton DW, Lewis RA, Tomey KF, Dueker DK, Jabak M. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. 2000;9(3):367-74.

Doshi M, Marcus C, Bejjani BA, Edward DPJEer. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes. 2006;82(1):24-32.

Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura TJTJoB. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. 1993;114(5):652-7.

Swindell EC, Eichele GJB. Retinoid metabolizing enzymes in development. 1999;10(2-3):85-9.

Banerjee A, Chakraborty S, Chakraborty A, Chakrabarti S, Ray KJPO. Functional and structural analyses of CYP1B1 variants linked to congenital and adult-onset glaucoma to investigate the molecular basis of these diseases. 2016;11(5):e0156252.

Faiq MA, Dada R, Qadri R, Dada TJJocgp. CYP1B1-mediated pathobiology of primary congenital glaucoma. 2015;9(3):77.

Ling C, Zhang D, Zhang J, Sun H, Du Q, Li XJE. Updates on the molecular genetics of primary congenital glaucoma. 2020;20(2):968-77.

Zavarzadeh PG, Shalbafan B, Abdi FJJoO, Sciences O. Primary Congenital Glaucoma: Detecting Novel Disease-Causing Variants Using Whole-Exome Sequencing and Pathway Analysis. 2020;4(1):43-59.

Shen X, Koga T, Park B-C, SundarRaj N, Yue BYJJoBC. Rho GTPase and cAMP/protein kinase A signaling mediates myocilin-induced alterations in cultured human trabecular meshwork cells. 2008;283(1):603-12.

Chen W, Yang X, Fang J, Zhang Y, Zhu W, Yang XJFip. Rho-associated protein kinase inhibitor treatment promotes proliferation and phagocytosis in trabecular meshwork cells. 2020;11:302.

Zhao Y, Wang S, Sorenson CM, Teixeira L, Dubielzig RR, Peters DM. Cyp1b1 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress. 2013;33(21):4225-40.

Falero-Perez J, Song Y-S, Sorenson CM, Sheibani NJTic, biology m. CYP1B1: A key regulator of redox homeostasis. 2018;13:27.

Schwartzman ML, Balazy M, Masferrer J, Abraham NG, McGiff JC, Murphy RCJPotNAoS. 12 (R)-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Na+, K+-ATPase in the cornea. 1987;84(22):8125-9.

Safari I, Suri F, Haji-Seyed-Javadi R, Yazdani S, Elahi EJOR. The p. Gly61Glu mutation in CYP1B1 affects the extracellular matrix in glaucoma patients. 2016;56(2):98-103.

Xia Q, Zhang D, Zhuang Y, Dai Y, Jia H, Du Q,. Animal Model Contributions to Primary Congenital Glaucoma. 2022;2022.

Chambers D, Wilson L, Maden M, Lumsden A. RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. 2007.

Williams AL, Eason J, Chawla B, Bohnsack BLJIo, science v. Cyp1b1 regulates ocular fissure closure through a retinoic acid–independent pathway. 2017;58(2):1084-97.

Williams AL, Bohnsack BLJBDRPCETR. Neural crest derivatives in ocular development: discerning the eye of the storm. 2015;105(2):87-95.

Shipley JM, Mecham RP, Maus E, Bonadio J, Rosenbloom J, McCarthy RT. Developmental expression of latent transforming growth factor β binding protein 2 and its requirement early in mouse development. 2000.

Rauf B, Irum B, Khan SY, Kabir F, Naeem MA, Riazuddin S. Novel mutations in LTBP2 identified in familial cases of primary congenital glaucoma. 2020;26:14.

Azmanov DN, Dimitrova S, Florez L, Cherninkova S, Draganov D, Morar B. LTBP2 and CYP1B1 mutations and associated ocular phenotypes in the Roma/Gypsy founder population. 2011;19(3):326-33.

Micheal S, Siddiqui SN, Zafar SN, Iqbal A, Khan MI, den Hollander AIJPO. Identification of novel variants in LTBP2 and PXDN using whole-exome sequencing in developmental and congenital glaucoma. 2016;11(7):e0159259.

Horiguchi M, Ota M, Rifkin DBJTjob. Matrix control of transforming growth factor-β function. 2012;152(4):321-9.

Kielty CM, Sherratt MJ, Marson A, Baldock CJAipc. Fibrillin microfibrils. 2005;70:405-36.

Saleem RS, Khan MI, Irshad S, Siddiqui SN, Micheal S. Identification of de Novo and Novel Mutations in LTBP2 in Pakistani Families with Inherited Primary Congenital Glaucoma. 2024.

Hirani R, Hanssen E, Gibson MAJMB. LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. 2007;26(4):213-23.

Inoue T, Ohbayashi T, Fujikawa Y, Yoshida H, Akama TO, Noda K. Latent TGF-β binding protein-2 is essential for the development of ciliary zonule microfibrils. 2014;23(21):5672-82.

Désir J, Sznajer Y, Depasse F, Roulez F, Schrooyen M, Meire F. LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma. 2010;18(7):761-7.

Wada M, Ebihara Y, Ma F, Yagasaki H, Ito M, Takahashi T. Tunica interna endothelial cell kinase expression and hematopoietic and angiogenic potentials in cord blood CD34+ cells. 2003;77:245-52.

van Zyl T, Yan W, McAdams A, Peng Y-R, Shekhar K, Regev A. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. 2020;117(19):10339-49.

Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DNJHg. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. 2014;133(1):1-9.

Sheikh SA, Waryah AM, Narsani AK, Shaikh H, Gilal IA, Shah K. Mutational spectrum of the CYP1B1 gene in Pakistani patients with primary congenital glaucoma: novel variants and genotype-phenotype correlations. 2014;20:991.

Stoilov I, Akarsu AN, Alozie I, Child A, Barsoum-Homsy M, Turacli ME. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. 1998;62(3):573-84.

Della Paolera M, de Vasconcellos JPC, Umbelino CC, Kasahara N, Rocha MN, Richeti F. CYP1B1 gene analysis in primary congenital glaucoma Brazilian patients: novel mutations and association with poor prognosis. 2010;19(3):176-82.

Rashid M, Yousaf S, Sheikh SA, Sajid Z, Shabbir AS, Kausar T. Identities and frequencies of variants in CYP1B1 causing primary congenital glaucoma in Pakistan. 2019;25:144.

Shan T, Gul B, Otho SA, Manzoor S, Noureen A, Rind KH. Mutational Analysis of CYP1B1 gene in families with Primary Congenital glaucoma. 2021;20(5):5285-92.

Tehreem R, Arooj A, Siddiqui SN, Naz S, Afshan K, Firasat SJPo. Mutation screening of the CYP1B1 gene reveals thirteen novel disease-causing variants in consanguineous Pakistani families causing primary congenital glaucoma. 2022;17(9):e0274335.

Zahid T, Khan MU, Zulfiqar A, Jawad F, Saleem A, Khan ARJPJoMS. Investigation of mutational spectrum in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma. 2023;39(2):409.

Surhio WA, Khidri FF, Haroon MI, Mehmood S, Waryah YMJJoLUoM, Sciences H. Mutation Screening of the CYP1B1 Gene Reveals Novel and Recurrent Pathogenic Variants in Pakistani Primary Congenital Glaucoma Patients. 2024;23(02):140-5.

Afzal R, Firasat S, Kaul H, Ahmed B, Siddiqui SN, Zafar S. Mutational analysis of the CYP1B1 gene in Pakistani primary congenital glaucoma patients: Identification of four known and a novel causative variant at the 3′ splice acceptor site of intron 2. 2019;59(5):152-61.

Micheal S, Ayub H, Zafar SN, Bakker B, Ali M, Akhtar F. Identification of novel CYP1B 1 gene mutations in patients with primary congenital and primary open‐angle glaucoma. 2015;43(1):31-9.

Khan MU, Rehman R, Kaul H, Mahmood S, Ammar AJAiLS. Mutational analysis of CYP1B1 gene in Pakistani pediatric patients affected with Primary Congenital Glaucoma. 2019;7(1):32-7.

Firasat S, Kaul H, Ashfaq UA, Idrees SJIo. In silico analysis of five missense mutations in CYP1B1 gene in Pakistani families affected with primary congenital glaucoma. 2018;38:807-14.

Downloads

Published

2025-03-16