Antimicrobial Activity of Silver Nanoparticles against Salmonella enteritidis

Authors

  • Farkhanda Department of Zoology, University of Balochistan, Quetta, Pakistan
  • Umbreen Shaheen Department of Zoology, University of Balochistan, Quetta, Pakistan
  • Abdul Samad Center for Advance Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan Quetta
  • Farha Manzoor Department of Zoology, University of Balochistan, Quetta
  • Sidra Aftab Department of Zoology, University of Balochistan, Quetta, Pakistan
  • Sana Saeed Ahmed Department of Zoology, University of Balochistan, Quetta, Pakistan
  • Shoaib Ahmad Malik Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan.

DOI:

https://doi.org/10.31580/pjmls.v4iSpecial%20Is.2173

Keywords:

Bio-nanotechnology, Silver Nanoparticles, Antimicrobial

Abstract

Bio-Nanotechnology has promptly been the mounting discipline of research which entails the manufacture and advancement of diverse nanomaterials. Whereas the silver nanoparticles have attained a great interest of researchers due to their antimicrobial properties, As Salmonellosis is a foodborne disease that is caused by Salmonella enteritidis found in the raw food. Silver nanoparticles have been utilized to check the sensitivity of concerned organism (Salmonella enteritidis) by many researchers which are highlighted in this review.

References

Bantan RA, Abu-Hamdeh NH, Nusier OK, Karimipour A. The molecular dynamics study of aluminum nanoparticles effect on the atomic behavior of argon atoms inside zigzag nanochannel. Journal of Molecular Liquids. 2021;331:115714.

Yousaf SA, Salamat A. Effect of heating environment on fluorine doped tin oxide (f: SnO/sub 2/) thin films for solar cell applications. InProceedings of the International Conference on Power Generation Systems Technologies 2011.

Kavitha KS, Baker S, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S. Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci. 2013;2(6):66-76.

Batista CA, Larson RG, Kotov NA. Nonadditivity of nanoparticle interactions. Science. 2015;350(6257)

Wegner TH, Jones EP. A fundamental review of the relationships between nanotechnology and lignocellulosic biomass. The nanoscience and technology of renewable biomaterials. 2009;1:1-41.

Bhushan B, Baumann. Springer handbook of nanotechnology. Bhushan B, editor. Berlin: Springer; 2007 Apr.

Schulte J. Introduction: movements in nanotechnology. Nanotechnology: Global Strategies, Industry Trends and Applications. 2005 11:1-4.

Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polymer Letters. 2007;1(9):546-75.

Mohieldin SD, Zainudin ES, Paridah MT, Ainun ZM. Nanotechnology in pulp and paper industries: A Review. InKey Engineering Materials 2011 (Vol. 471, pp. 251-256). Trans Tech Publications Ltd.

Randriatsarafara FM, Ralamboson J, Rakotoarivelo R, Raherinandrasana A, Andrianasolo R. Consommation d’antibiotiques au Centre Hospitalier Universitaire d’Antananarivo: prévalence et défis stratégiques. Santé Publique. 2015;27(2):249-55.

Park B, Martin P, Harris C, Guest R, Whittingham A, Jenkinson P, Handley J. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™–a nanoparticulate cerium oxide diesel fuel additive. Particle and fibre toxicology. 2007 ;4(1):1-0.

Bruno I, Frey JG. Connecting chemistry with global challenges through data standards. Chemistry International. 2017 ;39(3):5-8.

Kumar N, Kumbhat S. Carbon-based nanomaterials. Essentials in nanoscience and nanotechnology. 2016:189-236.

Jain KK. The role of nanobiotechnology in drug discovery. Drug discovery today. 2005 ;10(21):1435-42.

Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine: nanotechnology, biology and medicine. 2005 ;1(1):22-30.

Medici S, Peana M, Nurchi VM, Zoroddu MA. Medical uses of silver: history, myths, and scientific evidence. Journal of medicinal chemistry. 2019 ;62(13):5923-43.

Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine: nanotechnology, biology and medicine. 2005 ;1(1):22-30.

Nguyen TD, Nguyen TT, Ly KL, Tran AH, Nguyen TT, Vo MT, Ho HM, Dang NT, Vo VT, Nguyen DH, Nguyen TT. In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications. International Journal of Polymer Science. 2019.

Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. International journal of nanomedicine. 2015;10:4203.

LIWen-ru XB. AntibacterialActivityandMechanismofSilverNanoparticlesonEscherichiacoli. AppliedMicrobiologyandBiotechnology. 2010;85(4):1115-22.

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters. 2001 ;1(10):515-9.

Li LS, Hu J, Yang W, Alivisatos AP. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Letters. 2001;1(7):349-51.

Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface science. 2009 Jan 30;145(1-2):83-96.

Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000;26(2):131-8.

Choi O, Deng KK, Kim NJ, Ross Jr L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water research. 2008;42(12):3066-74.

Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology. 2016;54:155-64.

Deng Z, Chen M, Wu L. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. The Journal of Physical Chemistry C. 2007;111(31):11692-8.

Bosetti M, Massè A, Tobin E, Cannas M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002 ;23(3):887-92.

Xiao L, Takada H, Maeda K, Haramoto M, Miwa N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomedicine & pharmacotherapy. 2005;59(7):351-8.

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology. 2018;9(1):1050-74.

Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Occupational and Environmental Medicine. Nanotoxicology. 2004;61:727-8.

Lovell A. Inventory finds increase in consumer products containing nanoscale materials. Relaunched inventory seeks input to address scientific uncertainty. 2013.

de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology. 2012 Nov;32(11):867-79.

Jouyban A, Rahimpour E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta. 2020 ;217:121071.

Haeghebaert S, Duché L, Gilles C, Masini B, Dubreuil M, Minet JC, Bouvet P, Grimont F, Astagneau ED, Vaillant V. Minced beef and human salmonellosis: review of the investigation of three outbreaks in France. Eurosurveillance. 2001;6(2):21-6.

Akpor OB, Ohiobor GO, Olaolu DT. Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering. 2014;2(4):37-43.

Gillespie BE, Mathew AG, Draughon FA, Jayarao BM, Oliver SP. Detection of Salmonella enterica Somatic Groups C1 and E1 by PCR–Enzyme-Linked Immunosorbent Assay. Journal of food protection. 2003;66(12):2367-70.

Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC veterinary research. 2009 Dec;5(1):1-6.

Vose D, Koupeev T, Mintiens K. A quantitative microbiological risk assessment of Salmonella spp. in broiler (Gallus gallus) meat production. EFSA Supporting Publications. 2011;8(7):183E.

Thorns CJ. Bacterial food-borne zoonoses. Revue scientifique et technique (International Office of Epizootics). 2000;19(1):226-39.

Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. Journal of Industrial Microbiology and Biotechnology. 2006;33(7):627-34.

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology. 2007;73(6):1712-20.

Lara HH, Ayala-Núnez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. 2010;26(4):615-21.

Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A. Green fluorescent protein-expressing escherichia c oli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir. 2006;22(22):9322-8.

Chiao SH, Lin SH, Shen CI, Liao JW, Bau IJ, Wei JC, Tseng LP, Hsu SH, Lai PS, Lin SZ, Lin JJ. Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. International journal of nanomedicine. 2012;7:2421.

Ahamed M, AlSalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clinica chimica acta. 2010;411(23-24):1841-8.

Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver‐containing Hydrofiber® dressing. Wound repair and regeneration. 2004;12(3):288-94.

Bekele AZ, Gokulan K, Williams KM, Khare S. Dose and size-dependent antiviral effects of silver nanoparticles on feline calicivirus, a human norovirus surrogate. Foodborne pathogens and disease. 2016;13(5):239-44.

Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856-74.

Perez C. Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp. 1990;15:113-5.

Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances. 2019;9(5):2673-702.

Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine. 2009;5(4):452-6.

Biao L, Tan S, Wang Y, Guo X, Fu Y, Xu F, Zu Y, Liu Z. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Materials Science and Engineering: C. 2017;76:73-80.

Coseri S, Spatareanu A, Sacarescu L, Rimbu C, Suteu D, Spirk S, Harabagiu V. Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydrate polymers. 2015;116:9-17.

Malarkodi C, Rajeshkumar S, Paulkumar K, Jobitha GG, Vanaja M, Annadurai G. Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Advances in nano research. 2013;1(2):83.

Mohanta YK, Biswas K, Jena SK, Hashem A, Abd_Allah EF, Mohanta TK. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Frontiers in Microbiology. 2020; 11:1143.

Goswami SR, Sahareen T, Singh M, Kumar S. Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. Journal of Industrial and Engineering Chemistry. 2015; 26:73-80.

Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. International journal of nanomedicine. 2018;13:3571.

Manzoor F, Shaheen U, Samad A. Influence of AgNPs on Foodborne Bacteria-Campylobacter jejuni. Pak-Euro Journal of Medical and Life Sciences. 2021;4(Special Is):S50-58.

Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, Radu S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology. 2018 ;9:1555.

Losasso C, Belluco S, Cibin V, Zavagnin P, Mičetić I, Gallocchio F, Zanella M, Bregoli L, Biancotto G, Ricci A. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Frontiers in microbiology. 2014;5:227.

Downloads

Published

2021-12-31