Biocidal Activity of Silver Nanoparticles against Escherichia Coli

Authors

  • Sana saeed ahmad University Of Balochistan Quetta
  • Umbreen Shaheen
  • Abdul Samad Center for Advance Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan Quetta
  • Farha Manzoor
  • Farkhanda
  • Irfan Shahzad Sheikh Center for Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan, Quetta, Pakistan.

DOI:

https://doi.org/10.31580/pjmls.v4iSpecial%20Is.2131

Keywords:

Nanotechnology, Zone of inhibition (ZOI), Minimum inhibitory concentration (MIC),, Antibacterial,, Escherichia coli (E. coli), Silver Nanoparticles (AgNPs)

Abstract

Nanotechnology could be particularly useful in the treatment of bacterial illnesses. Silver Nanoparticles (AgNPs) are progressively being employed to target bacteria, as a substitute to antibiotics. Escherichia coli (E. coli) is a gram-negative bacteria that can be present in the environment, foods, and animals' and humans' intestines. Some of its strains have the potential to cause illness in humans. Some roots diarrhea, while others cause pneumonia, lung illness, urinary tract infections, and a number of other problems. Many researchers have used AgNPs to analyze their bactericidal activity against E. coli. The aim of this review paper is to highlight the uses of silver Nanoparticles and their microbial activity on E. coli.

References

1. Fagerlund G. Determination of specific surface by the BET method. Matériaux et Construction. 1973;6(3):239-45.
2. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews. 2008;108(6):2064-110.
3. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019;12(7):908-31.
4. Horn T, Huber E, Kreft A, Longerich T, Morton T, Myerson D, Prieto VG, Rosenberg A, Treister N, Washington K, Ziemer M. Biology of blood and marrow transplantation. Biol Blood Marrow Transplant. 2015;30(1e15):1e15
5. Todescato F, Fortunati I, Minotto A, Signorini R, Jasieniak JJ, Bozio R. Engineering of semiconductor nanocrystals for light emitting applications. Materials. 2016 Aug;9(8):672.
6. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019;12(7):908-31.
7. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society. 2005;127(16):5732-3.
8. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh ME, Yang DC. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. International journal of nanomedicine. 2015;10:2567.
9. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology. 2004;22(8):969-76.
10. Hirsch LR, Stafford RJ, Sershen SR, Halas NJ, Hazle JD, West JL. Nanoshell-assisted tumor ablation using near infrared light under magnetic resonance guidance. Proc Natl Acad Sci. 2003;100:113549-54.
11. Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. Journal of pharmacy & bioallied sciences. 2012;4(3):186.
12. Curtis J, Greenberg M, Kester J, Phillips S, Krieger G. Nanotechnology and nanotoxicology. Toxicological reviews. 2006;25(4):245-60.
13. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and environmental microbiology. 2003;69(7):4278-81.
14. Kandile NG, Zaky HT, Mohamed MI, Mohamed HM. Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles. Bulletin of the Korean Chemical Society. 2010;31(12):3530-8.
15. Shahrokh S, Emtiazi G. Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. Eur. J. Biol. Sci. 2009;1(3):28-31.
16. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3(2):109-38.
17. Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2(3):104-11.
18. Basu S, Jana S, Pande S, Pal T. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of colloid and interface science. 2008;321(2):288-93.
19. Anandan B, Rajendran V. Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Materials Science in Semiconductor Processing. 2011; 14(1):43-7.
20. Laokul P, Amornkitbamrung V, Seraphin S, Maensiri S. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Current Applied Physics. 2011;11(1):101-8.
21. Mu Y, Liang H, Hu J, Jiang L, Wan L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. The Journal of Physical Chemistry B. 2005;109(47):22212-6.
22. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2002;14(1):95.
23. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H. A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomedicine: Nanotechnology, Biology and Medicine. 2011;7(5):655-63.
24. Cao H, Liu X. Silver nanoparticles?modified films versus biomedical device?associated infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(6):670-84.
25. Walser T, Demou E, Lang DJ, Hellweg S. Prospective environmental life cycle assessment of nanosilver T-shirts. Environmental science & technology. 2011;45(10):4570-8.
26. Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environmental science & technology. 2008;42(11):4133-9.
27. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry–Recent developments, risks and regulation. Trends in food science & technology. 2012 ;24(1):30-46.
28. Huang Y, Chen S, Bing X, Gao C, Wang T, Yuan B. Nanosilver migrated into food?simulating solutions from commercially available food fresh containers. Packaging Technology and Science. 2011;24(5):291-7.
29. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27(1):76-83.
30. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and environmental microbiology. 2003;69(7):4278-81.
31. Gupta A, Maynes M, Silver S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Applied and environmental microbiology. 1998;64(12):5042-5.
32. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research. 2000;52(4):662-8.
33. Nover L, Scharf KD, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Molecular and cellular biology. 1983;3(9):1648-55.
34. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004;275(1):177-82.
35. Zhang XF. Zhi-Guo liu, Wei shen, Sangiliyandi Gurunathan. SilverNanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences. 2016;17:1534.
36. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in applied microbiology. 1997;25(4):279-83.
37. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS genetics. 2009;5(1):e1000344.
38. Kakkar Thukral D, Dumoga S, K Mishra A. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Current drug delivery. 2014;11(6):771-91.
39. Kaper, James B., James P. Nataro, and Harry LT Mobley. "Pathogenic escherichia coli." Nature reviews microbiology 2.2 (2004): 123-140.
40. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR, Angulo FJ, Griffin PM. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging infectious diseases. 2013;19(3):407.
41. Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Frontiers in microbiology. 2012, 26;3:18.
42. WHO Scientific Group on Health Aspects of Use of Treated Wastewater for Agriculture and Aquaculture. Health guidelines for the use of wastewater in agriculture and aquaculture: report of a WHO Scientific group. World Health Organization; 1989.
43. Holmes S. South African water quality guidelines. Volume 7: aquatic ecosystems.
44. Foppen JW, Schijven JF. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturate Ishii S, Sadowsky MJ. Escherichia coli in the environment: implications for water quality and human health. Microbes and environments. 2008;23(2):101-8.d conditions. Water Research. 2006;40(3):401-26.
45. Ishii S, Sadowsky MJ. Escherichia coli in the environment: implications for water quality and human health. Microbes and environments. 2008;23(2):101-8.
46. Fremaux B, Prigent-Combaret C, Vernozy-Rozand C. Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: an updated review. Veterinary microbiology. 2008;132(1-2):1-8.
47. Topp E, Welsh M, Tien YC, Dang A, Lazarovits G, Conn K, Zhu H. Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS microbiology ecology. 2003 ;44(3):303-8.
48. Ibekwe AM, Murinda SE, Graves AK. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One. 2011;6(6):e20819.
49. Janezic KJ, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, Roberts ME, Scott SM, Theisen AN, Hung KF, Daniel SL. Phenotypic and genotypic characterization of Escherichia coli isolated from untreated surface waters. The open microbiology journal. 2013;7:9.
50. Russell B. Quantitative Study of the Antimicrobial Effects of Silver on the Motility of Escherichia coli. University of Arkansas; 2019.
51. Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, Radu S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology. 2018 ;9:1555.
52. Paredes D, Ortiz C, Torres R. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). International journal of nanomedicine. 2014;9:1717.
53. Kar D, Bandyopadhyay S, Dimri U, Mondal DB, Nanda PK, Das AK, Batabyal S, Dandapat P, Bandyopadhyay S. Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: an in vitro study. Asian Pacific Journal of Tropical Disease. 2016;6(10):807-10.
54. Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, Cameotra SS. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of basic microbiology. 2014;54(9):905-15.
55. Prieto EI, Kiat AA. The antimicrobial action of silver nanoparticles on Escherichia coli as revealed by atomic force microscopy. Philipp Sci Lett. 2017;10:123-9.
56. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of materials science and technology. 2008 ;24(2):192-6.
57. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine. 2007 ;3(1):95-101.
58. Le AT, Huy PT, Tam PD, Huy TQ, Cam PD, Kudrinskiy AA, Krutyakov YA. Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Current Applied Physics. 2010;10(3):910-6.
59. Parameswari E, Udayasoorian C, Sebastian SP, Jayabalakrishnan RM. The bactericidal potential of silver nanoparticles. International Research Journal of Biotechnology. 2010;1(3):044-9.
60. Thanh NV, Phong NT. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid. InJournal of Physics: Conference Series 2009 (Vol. 187, No. 1, p. 012072). IOP Publishing.
61. Shavandi Z, Ghazanfari T, NAZARI MK, ABDI A. The inhibitory effect of colloidal silver nanoparticles on three bacterial strains and macrophages in a 24-hrs cell culture.
62. Ghosh S, Kaushik R, Nagalakshmi K, Hoti SL, Menezes GA, Harish BN, Vasan HN. Antimicrobial activity of highly stable silver nanoparticles embedded in agar–agar matrix as a thin film. Carbohydrate Research. 2010 ;345(15):2220-7.
63. Tiwari DK, Behari J. Biocidal nature of combined treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli DH5. Advances in Biological Research. 2009;3(3-4):89-95.
64. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine. 2007 ;3(1):95-101.
65. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 2016 ;6(4):74.
66. Cunha FA, Maia KR, Mallman EJ, CUNHA MD, Maciel AA, SOUZA IP, Menezes EA, Fechine PB. Silver nanoparticles-disk diffusion test against Escherichia coli isolates. Revista do Instituto de Medicina Tropical de São Paulo. 2016; 22;58.
67. Rao P, Chandraprasad MS, Lakshmi YN, Rao J, Aishwarya P, Shetty S. Biosynthesis of silver nanoparticles using lemon extract and its antibacterial activity. International Journal of Multidisciplinary and Current Research. 2014;2:165-9.

Downloads

Published

2021-12-31