Influence of AgNPs on Foodborne Bacteria- Campylobacter jejuni

Authors

  • Farha Manzoor Department of Zoology, University of Balochistan, Quetta
  • Umbreen Shaheen
  • Abdul Samad

DOI:

https://doi.org/10.31580/pjmls.v4iSpecial%20Is.2126

Keywords:

Silver nanoparticles (AgNPs, SNPs), Zinc oxides (ZnO), Titanium Oxides (TiO)

Abstract

Nanotechnology is likely to express new ways to combat and inhibit diseases by means of atomic scale modified form of materials. Silver nanoparticles (AgNPs) have gained much attention in recent years due to their biomedical applications, especially as antimicrobial agents. Various food- borne pathogens have been discovered as causes of food- borne sickness. Campylobacter is a main factor of foodborne gastro-intestinal disorders worldwide. Recently antibiotic resistivity of Campylobacter has turn out to be a main public health alarmed it has built an interest for emerging new antibacterial approaches for decreasing the effect of this food-borne pathogen on human health. Silver nanoparticles can be used as an alternative to antibiotic growth promoters in poultry production. AgNPs penetrate bacterial cells and interact with the cell's molecular structure, allowing them to proliferate. The efficiency of NPs is due to their Nanoscale size and large ratio of surface area to volume However, the influence of AgNPs on food-borne microorganisms is little known. The aim of present study was to investigate the effect of silver nanoparticles against the food-borne bacteria campylobacter with 20 different strains jejuni and coli.

References

1. Poole Jr CP, Owens FJ. Introduction to nanotechnology. John Wiley & Sons; 2003
2. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews. 2008;108(6):2064-110.
3. Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K, Samiei M. Silver nanoparticles: synthesis methods, bio-applications and properties. Critical reviews in microbiology. 2016;42(2):173-80.
4. Kanmani P, Lim ST. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochemistry. 2013;48(7):1099-106.
5. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology. 2004(8):969-76.
6. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature reviews cancer. 2005;5(3):161-71.
7. Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environmental science & technology. 2010;44(14):5649-54.
8. Dunn K, Edwards-Jones V. The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns. 2004;30:S1-9.
9. Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment. 2007;373(2-3):572-5.
10. Ayala-Núñez NV, Villegas HH, Turrent LD, Padilla CR. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology. 2009;5(1-4):2-9.
11. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25(18):4383-91.
12. Sawosz E, Chwalibog A, Mitura K, Mitura S, Szeliga J, Niemiec T, Rupiewicz M, Grodzik M, Soko?owska A. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella enteritidis and Listeria monocytogenes. Journal of nanoscience and nanotechnology. 2011;11(9):7635-41.
13. Chen D, Xi T, Bai J. Biological effects induced by nanosilver particles: in vivo study. Biomedical Materials. 2007;2(3):S126.
14. Tahir A, Asif M, Abbas Z, ur Rehman S. Three bacteriophages SA, SA2 and SNAF can control growth of milk isolated Staphylococcal species. Pak J Zool. 2017;49:425-759.
15. Samad A, Abbas F, Ahmad Z, Pokryrshko O, Asmat TM. Prevalence of foodborne pathogens in food items in Quetta, Pakistan. Pakistan J. Zool. 2018;50(4):1-4.
16. Denis N, Zhang H, Leroux A, Trudel R, Bietlot H. Prevalence and trends of bacterial contamination in fresh fruits and vegetables sold at retail in Canada. Food control. 2016;67:225-34.
17. Leach KM, Stroot JM, Lim DV. Same-day detection of Escherichia coli O157: H7 from spinach by using electrochemiluminescent and cytometric bead array biosensors. Applied and environmental microbiology. 2010 ;76(24):8044-52.
18. Chattaway MA, Dallman T, Okeke IN, Wain J. Enteroaggregative E. coli O104 from an outbreak of HUS in Germany 2011, could it happen again?. The Journal of Infection in Developing Countries. 2011;5(06):425-36.
19. He X, Patfield S, Hnasko R, Rasooly R, Mandrell RE. A polyclonal antibody based immunoassay detects seven subtypes of Shiga toxin 2 produced by Escherichia coli in human and environmental samples. PloS one. 2013 ;8(10):e76368.
20. World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. World Health Organization; 2015.
21. Abdallah SA, Al-Shatti LA, Alhajraf AF, Al-Hammad N, Al-Awadi B. The detection of foodborne bacteria on beef: the application of the electronic nose. SpringerPlus. 2013 ;2(1):1-9.
22. El-Zamkan MA, Hameed KG. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Veterinary world. 2016 (10):1147.
23. Rees JH, Gregson NA, Griffiths PL, Hughes RA. Campylobacter jejuni and Guillain-Barré syndrome. QJM: Quarterly Journal of Medicine. 1993 ;86(10):623-34.
24. Nachamkin I. Microbiologic approaches for studying Campylobacter species in patients with Guillain-Barré syndrome. Journal of Infectious Diseases. 1997;176(Supplement_2):S106-14.
25. Ketley JM. Pathogenesis of enteric infection by Campylobacter. Microbiology. 1997 ;143(1):5-21.
26. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Pesudo LQ, Rauscher H. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology. 2015 ;73(1):463-76.
27. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and environmental microbiology. 2011;77(7):2325-31.
28. Wagner G, Korenkov V, Judy JD, Bertsch PM. Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials. 2016 ;6(3):50.
29. He X, Hwang HM. Nanotechnology in food science: Functionality, applicability, and safety assessment. journal of food and drug analysis. 2016 ;24(4):671-81.
30. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of food and drug analysis. 2014 ;22(1):64-75.
31. Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis. 2014 ;22(1):86-94.
32. Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of nanobiotechnology. 2015 ;13(1):1-6.
33. Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. Journal of nanobiotechnology. 2004 ;2(1):1-5.
34. Lewis LN. Chemical catalysis by colloids and clusters. Chemical Reviews. 1993 ;93(8):2693-730.
35. Solov’ev AY, Potekhina TS, Chernova IA, Basin BY. Track membrane with immobilized colloid silver particles. Russian Journal of Applied Chemistry. 2007 ;80(3):438-42.
36. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie International Edition. 2001 ;40(22):4128-58.
37. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B. 2005; 109(29):13857-70.
38. Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000 ;26(2):131-8.
39. Dunn K, Edwards-Jones V. The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns. 2004 ;30:S1-9.
40. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 2004 ;275(1):177-82.
41. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17-71.
42. Hamilton RF, Buckingham S, Holian A. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. International journal of molecular sciences. 2014;15(4):6815-30.
43. Hernández-Castillo MI, Zaca-Moran O, Zaca-Moran P, Rojas-Lopez M, Gayou VL, Delgado-Macuil R, Orduña-Diaz A. Shape and stability of silver nanoparticles and their dependence on the conditions of preparation. MRS Online Proceedings Library (OPL). 2012;1371.
44. Liu Y, Balachandran YL, Li D, Shao Y, Jiang X. Polyvinylpyrrolidone–poly (ethylene glycol) modified silver nanorods can be a safe, noncarrier adjuvant for HIV vaccine. ACS nano. 2016;10(3):3589-96.
45. Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1-6.
46. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(1):103-9.
47. van den Toren SJ, van Grieken A, Mulder WC, Vanneste Y, Lugtenberg M, de Kroon ML, Tan SS, Raat H. School absenteeism, Health-Related Quality of Life [HRQOL] and happiness among young adults aged 16–26 years. International journal of environmental research and public health. 2019;16(18):3321.
48. Lara HH, Ayala-Núnez NV, Turrent LD, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. 2010 ;26(4):615-21.
49. Szewzyk U, Szewzyk R, Manz W, Schleifer KH. Microbiological safety of drinking water. Annual Reviews in Microbiology. 2000;54(1):81-127.
50. Peterson MC. Clinical aspects of Campylobacter jejuni infections in adults. Western Journal of Medicine. 1994 Aug;161(2):148.
51. Heredia N, García S. Animals as sources of food-borne pathogens: A review. Animal nutrition. 2018;4(3):250-5.
52. Suzuki H, Yamamoto S. Campylobacter contamination in retail poultry meats and by-products in the world: a literature survey. Journal of Veterinary Medical Science. 2009;71(3):255-61.
53. Ruiz-Palacios GM, Escamilla E, Torres N. Experimental Campylobacter diarrhea in chickens. Infection and immunity. 1981;34(1):250-5.
54. Sanyal SC, Islam KM, Neogy PK, Islam M, Speelman P, Huq MI. Campylobacter jejuni diarrhea model in infant chickens. Infection and immunity. 1984;43(3):931-6.
55. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition. 2013;52(6):1636-53.
56. Gormley FJ, Strachan NJ, Reay K, MacKenzie FM, Ogden ID, Dallas JF, Forbes KJ. Antimicrobial resistance profiles of Campylobacter from humans, retail chicken meat, and cattle feces. Foodborne pathogens and disease. 2010;7(9):1129-31.
57. Ahmad MB, Lim JJ, Shameli K, Ibrahim NA, Tay MY, Chieng BW. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route. Chemistry Central Journal. 2012;6(1):1-9.
58. Badea M, Braic M, Kiss A, Moga M, Pozna E, Pana I, Vladescu A. Influence of Ag content on the antibacterial properties of SiC doped hydroxyapatite coatings. Ceramics International. 2016 ;42(1):1801-11.
59. Blaser MJ, Engberg J. Clinical aspects of Campylobacter jejuni and Campylobacter coli infections. Campylobacter. 2008 5:97-121.
60. Fitzgerald C, Whichard J, Nachamkin I. Diagnosis and antimicrobial susceptibility of Campylobacter species. Campylobacter. 2008 5:227-43.
61. Bollinger H, Kathariou S. The current state of macrolides resistance in Campylobacter spp.: Trends and impacts of resistance mechanism. Appl Environ Microbiol. 2017;83:e00416-7.
62. Weam B, Abraham M, Doiphode S, Peters K, Ibrahim E, Sultan A, Mohammed HO. Foodborne bacterial pathogens associated with the risk of gastroenteritis in the state of qatar. International journal of health sciences. 2016;10(2):197.
63. EFSA E. European Food Safety Authority and European Centre for Disease Prevention and Control. EFSA J ;13:4329.
64. Choi O, Deng KK, Kim NJ, Ross Jr L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water research. 2008;42(12):3066-74.
65. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7):836.
66. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in microbiology. 2014;5:391.
67. Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research. 2010;12(5):1531-51.
68. Fröhlich EE, Fröhlich E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. International journal of molecular sciences. 2016;17(4):509.
69. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
70. Hastings R, Colles FM, McCarthy ND, Maiden MC, Sheppard SK. Campylobacter genotypes from poultry transportation crates indicate a source of contamination and transmission. Journal of applied microbiology. 2011;110(1):266-76.
71. Li L, Wei D, Wei G, Du Y. Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment. Journal of hazardous materials. 2013 ;262:48-54.
72. Regan F, Chapman J, Sullivan T. Biological Methods for Characterisation of Nano-Anti-Microbial Materials. Nanoparticles Anti-Microbial Mater. Use Characterisation. 1st ed., The Royal Society of Chemistry. 2012:153-92.

Downloads

Published

2021-12-14