Extraction, Isolation and Chemical Characterization of Pigments from Penicillium Species

Authors

  • Shah Taj Faqir Muhammad Institute of Biochemistry, University of Balochistan, Quetta.
  • Amara Aftab Institute of Biochemistry University of Balochistan
  • Nukhba Akbar SBK Women's University, Quetta
  • Samira Khaliq
  • Ashif Sajjad
  • Muhammad Ayub Kakar
  • Faqir Muhammad Livestock and Dairy Development Department Balochistan, Quetta, Pakistan

DOI:

https://doi.org/10.31580/pjmls.v4iSpecial%20Is.2103

Keywords:

Chromatography, FTIR, LC-MS, NMR, Penicillium, UV-Vis Spectroscopy.

Abstract

Penicillium species produce a wide range of biotechnologically important pigments, majority of which belong to aromatic polyketide group of compounds. By providing with suitable culture media conditions and incubation time, pigments are produced extracellularly and intracellularly. The pigments are extracted according to their mode of synthesis by the fungus via organic solvents accompanied with mechanical techniques such as centrifugation or agitation. The extracted pigments are isolated via chromatographic techniques—Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography—HPLC. As the pigments are of high biotechnological importance because they have the potential to be utilized in industries like textile, food, cosmetics and pharmaceuticals; it is necessary they are chemically characterized before declaring their use. The isolated pigments are characterized through spectroscopic techniques like NMR—Nuclear Magnetic Resonance, LC-MS—Liquid Chromatography Mass Spectrometry, FTIR—Fourier Transform Infrared and UV-Vis—Ultraviolet Visible spectroscopy. This article focuses on the pigments produced by penicillium species: their fermentation conditions, extraction—extracellular and intracellular, isolation or purification, chemical characterization and biotechnological applications.

References

1. Pandey N, Jain R, Pandey A, Tamta SJM. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp.(GBPI_P155) isolated from mountain ecosystem. 2018;9(2):81-92.
2. Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski BJA, microbiology e. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. 2012;78(12):4468-80.
3. Krishnamurthy S, Narasimha Murthy K, Thirumale SJNpr. Characterization of ankaflavin from Penicillium aculeatum and its cytotoxic properties. 2020;34(11):1630-5.
4. Pastre R, Marinho AM, Rodrigues-Filho E, Souza AQ, Pereira JOJQN. Diversity of polyketides produced by Penicillium species isolated from Melia azedarach and Murraya paniculata. 2007;30(8):1867-71.
5. Pagano MC, Dhar PPJFbs, applications, developments r. Fungal pigments: an overview. 2015;13:173-9.
6. Brown DW, Salvo JJJA, microbiology e. Isolation and characterization of sexual spore pigments from Aspergillus nidulans. 1994;60(3):979-83.
7. dos Reis Celestino J, de Carvalho LE, da Paz Lima M, Lima AM, Ogusku MM, de Souza JVBJPB. Bioprospecting of Amazon soil fungi with the potential for pigment production. 2014;49(4):569-75.
8. Kumar A, Asthana M, Gupta A, Nigam D, Mahajan S. Chapter 3-Secondary Metabolism and Antimicrobial Metabolites of Penicillium In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 47-68)[Internet]. sciencedirect. 2018 [cited 18 July 2020].
9. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, et al. Biodiversity of the genus Penicillium in different habitats. New and future developments in microbial biotechnology and bioengineering: Elsevier; 2018. p. 3-18.
10. Afshari M, Shahidi F, Mortazavi SA, Tabatabai F, Es' haghi ZJNpr. Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409. 2015;29(14):1300-6.
11. Mapari SA, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane UJCOiB. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. 2005;16(2):231-8.
12. Cho Y, Park J, Hwang H, Kim S, Choi J, Yun JJLiam. Production of red pigment by submerged culture of Paecilomyces sinclairii. 2002;35(3):195-202.
13. Lee B-K, Park N-H, Piao HY, Chung W-JJB, Engineering B. Production of red pigments by Monascus purpureus in submerged culture. 2001;6(5):341-6.
14. Pisareva E, Savov V, Kujumdzieva AJZfNC. Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. 2005;60(1-2):116-20.
15. Lin T, Yakushijin K, Büchi G, Demain AJJoIM. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. 1992;9(3):173-9.
16. Lin T, Demain AJAm, biotechnology. Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. 1995;43(4):701-5.
17. Dikshit R, Tallapragada PJJoM, Research B. Monascus purpureus: A potential source for natural pigment production. 2011;1(4):164-74.
18. Ogihara J, Kato J, Oishi K, Fujimoto YJJob, bioengineering. PP-R, 7-(2-hydroxyethyl)-monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. 2001;91(1):44-7.
19. Ogihara J, Oishi KJJob, bioengineering. Effect of ammonium nitrate on the production of PP-V and monascorubrin homologues by Penicillium sp. AZ. 2002;93(1):54-9.
20. Ogihara J, Kato J, Oishi K, Fujimoto YJJob, bioengineering. Biosynthesis of PP-V, a monascorubramine homologue, by Penicillium sp. AZ. 2000;90(6):678-80.
21. Ogihara J, Kato J, Oishi K, Fujimoto Y, Eguchi TJJob, bioengineering. Production and structural analysis of PP-V, a homologue of monascorubramine, produced by a new isolate of Penicillium sp. 2000;90(5):549-54.
22. Arai T, Kojima R, Motegi Y, Kato J, Kasumi T, Ogihara JJFb. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum. 2015;119(12):1226-36.
23. da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos C, et al. Production and chemical characterization of pigments in filamentous fungi. 2016;162(1):12-22.
24. Zhang L-h, Long Y, Lei X-l, Xu J-y, Huang Z-j, She Z-g, et al. Azaphilones isolated from an alga-derived fungus Penicillium sp. ZJ-27. 2016;18:180-6.
25. Bhardwaj S, Shukla A, Mukherjee S, Sharma S, Guptasarma P, Chakraborti AK, et al. Putative structure and characteristics of a red water-soluble pigment secreted by Penicillium marneffei. 2007;45(5):419-27.
26. Shah SG, Shier WT, Tahir N, Hameed A, Ahmad S, Ali NJAom. Penicillium verruculosum SG: a source of polyketide and bioactive compounds with varying cytotoxic activities against normal and cancer lines. 2014;196(4):267-78.
27. Igarashi Y, Kuwamori Y, Takagi K, Ando T, Fudou R, Furumai T, et al. Xanthoepocin, a new antibiotic from Penicillium simplicissimum IFO5762. 2000;53(9):928-33.
28. Jin HJ, Zhang X, Cao H, Niu YJ, Li C, Liu HJC, et al. Chemical Composition, Security and Bioactivity of the Red Pigment from Penicillium purpurogenum Li?3. 2018;15(12):e1800300.
29. Robinson N, Wood K, Hylands PJ, Gibson TM, Weedon CJ, Covill NJJonp. Blue pigments of Penicillium herquei. 1992;55(6):814-7.
30. Sardaryan E. Strain of the microorganism Penicillium oxalicum var. Armeniaca and its application. Google Patents; 2002.
31. dos Santos PO, Ferraz CG, Ribeiro PR, Miranda FM, da Silva F, de Souza JT, et al. Antioxidant and antibacterial activities of the chlorine pigment sclerotiorin from Penicillium mallochii and its chemotaxonomic significance. 2019;86:103915.
32. Büchi G, White J, Wogan GJJotACS. The structures of mitorubrin and mitorubrinol. 1965;87(15):3484-9.
33. Roberts JC, Thompson DJJotCSCO. Studies in mycological chemistry. Part XXVII. Reinvestigation of the structure of purpurogenone, a metabolite of Penicillium purpurogenum Stoll. 1971:3488-92.
34. Roberts JC, Thompson DJJotCSCO. Studies in mycological chemistry. Part XXVIII. Isolation and structure of deoxypurpurogenone, a minor pigment of Penicillium purpurogenum Stoll. 1971:3493-5.
35. Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming YJBt. Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during co-culture with Candida tropicalis. 2011;102(10):6082-7.
36. Kaur S, Arora N, Kaur SJJBB. Characterization of yellow pigments produced by Pencillium sp. under solid state cultivation. 2017;7(259):2.
37. Gupta C, Aggarwal SJF, Polymers. Optimization and extraction of extra and intracellular color from Penicillium minioluteum for application on protein fibers. 2017;18(4):741-8.
38. Abreu L, Santos CJM. Production and chemical characterization of pigments in filamentous fungi. 2015;162(1):12-22.
39. Valenzuela-Gloria MS, Balagurusamy N, Chávez-González ML, Aguilar O, Hernández-Almanza A, Aguilar CNJJoF. Molecular Characterization of Fungal Pigments. 2021;7(5):326.
40. Granger RM, Yochum HM, Granger JN, Sienerth KD. Instrumental analysis: Oxford University Press; 2017.
41. Morales-Oyervides L, Ruiz-Sánchez JP, Oliveira JC, Sousa-Gallagher MJ, Méndez-Zavala A, Giuffrida D, et al. Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: A review. 2020:107601.
42. Lee D, Lee JH, Cai XF, Shin JC, Lee K, Hong Y-S, et al. Fungal metabolites, sorbicillinoid polyketides and their effects on the activation of peroxisome proliferator-activated receptor ?. 2005;58(10):615-20.
43. Liu W, Gu Q, Zhu W, Cui C, Fan GJTJoa. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre. 2005;58(10):621-4.
44. Hsu W-H, Lee B-H, Liao T-H, Hsu Y-W, Pan T-MJF, toxicology c. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-? regulation and JNK inactivation in THP-1 monocytes. 2012;50(5):1178-86.
45. Yasukawa K, Takahashi M, Natori S, Kawai K-i, Yamazaki M, Takeuchi M, et al. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. 1994;51(1):108-12.
46. Martinkova L, J? zlová P, Veselý DJJoAB. Biological activity of polyketide pigments produced by the fungus Monascus. 1995;79(6):609-16.

Downloads

Published

2021-12-28