Stratagies Used to Control Bacteriophages Contamination in Dairy Food and Industry

Authors

  • Nazia Panezai M.phill Scholar

DOI:

https://doi.org/10.31580/pjmls.v4iSpecial%20Is.1866

Keywords:

Bacteriophages, Streptococcus thermophilus, Lactococcus lactis, Lactobacillus delbrueckii, Phage Contamination Sources, Phage control strategies.

Abstract

Bacteriophages are the most important cause of fermentation failure in the dairy industry because they are present normally in the environment. These phages spoil the dairy products; thus, phages should be removed from industry to obtain good quality products. This review focuses on the main sources of contamination and strategies to control phage infection in dairy industry. These include: factory design, control of air flow, use of sanitizers, restricted used of recycled products, selection and growth of bacterial cultures, starter rotation, selected media and products organization can limit the number of phages to some extent. Phages are also hazardous for yogurt processing and for this, 3-component yogurt starter were designed to stabilize and improved fermentation process in the presence of phages. Another food refining treatment is the use of live microorganisms to stop or remove pathogenic and/or spoilage bacteria in/on food and it is bacteriophage-based treatment which focus on their mode of action when used for foods i.e., milk and dairy products. Bacteriophages contaminated whey sample, causes problems in cheese plant as separation of whey leads to aerosol-borne phages. Whey proteins or cream used for reprocessing may have thermo-resistant phages. To eliminate this risk, inactivation of phages by thermal treatment, ultraviolet (UV) light irradiation, membrane ?ltration and a combined treatment using membrane ?ltration or UV in combination with thermal treatment, can reduce the phage numbers and growth in whey.

References

Hutkins RW. Fermented vegetables. Microbiology and Technology of fermented foods. 2006;12:223-59.

Okafor, N.Modern industrial microbiology and biotechnology. 2016. CRC Press.

Kołakowski P, Rybka J. Causes of disturbances in fermentation processes. Bull. Inform. Rhodia Food Biolacta. 2001;3: 8-11.

Müller-Merbach M. LactococcusLactis Bacteriophages in Milksystems: Thermal-hydrostatic Inactivation and Proliferation by Means of Propagation and Diffusion. VDI; 2007.

Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends in microbiology. 2005;13(6):278-84.

Daly C, Fitzgerald GF, Davis R. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie van Leeuwenhoek. 1996;70(2):99-110.

Coffey A, Ross RP. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek. 2002;82(1):303-21.

Whitehead HR, Cox GA. Selection of Starter Cultures for Cheese-manufacture: A Preliminary Note on a New Method. Government Printer; 1935.

Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978;272(5653):501-6

Whitehead HR, Hunter GJ. 275. Starter cultures for cheese manufacture: Further attempts to eliminate failures due to bacteriophage. Journal of Dairy Research. 1941;12(1):63-70.

Kleppen HP, Bang T, Nes IF, Holo H. Bacteriophages in milk fermentations: diversity fluctuations of normal and failed fermentations. International dairy journal. 2011;21(9):592-600.

Daly C, Fitzgerald GF, Davis R. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie van Leeuwenhoek. 1996;70(2):99-110.

Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microbial cell factories. 2011;10(1):1-0.

Capra ML, Quiberoni AD, Ackermann HW, Moineau S, Reinheimer JA. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. Journal of Dairy Science. 2006;89(7):2414-23.

Capra ML, Binetti AG, Mercanti DJ, Quiberoni A, Reinheimer JA. Diversity among Lactobacillus paracasei phages isolated from a probiotic dairy product plant. Journal of applied microbiology. 2009;107(4):1350-7.

Accolas JP, Peigney C, Limsowtin GK, Cluzel PJ, Séchaud L. Lutte contre les bactériophages dans l'industrie laitière. 1994.

Suárez VB, Capra ML, Rivera M, Reinheimer JA. Inactivation of calcium-dependent lactic acid bacteria phages by phosphates. Journal of food protection. 2007;70(6):1518-22.

Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni AD. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Frontiers in microbiology. 2012;2:282.

Atamer Z, Dietrich J, Müller-Merbach M, Neve H, Heller KJ, Hinrichs J. Screening for and characterization of Lactococcuslactis bacteriophages with high thermal resistance. International Dairy Journal. 2009;19(4):228-35.

Atamer Z, Ali Y, Neve H, Heller KJ, Hinrichs J. Thermal resistance of bacteriophages attacking flavour-producing dairy Leuconostoc starter cultures. International dairy journal. 2011;21(5):327-34.

Tamime AY, Robinson RK. Yoghurt: science and technology. Woodhead Publishing; 1999.

Daly C. The use of mesophilic cultures in the dairy industry. Antonie van Leeuwenhoek. 1983;49(3):297-312.

Lawrence RC, Pearce LE. Cheese starters under control. Dairy Indus. 1972

Stadhouders J, LEENDERS GM. Spontaneously developed mixed-strain cheese starters. Their behaviour towards phages and their use in the Dutch cheese industry. Netherlands milk and dairy journal. 1984;38(3):157-81.

Moineau S, Lévesque C. Control of bacteriophages in industrial fermentations. Bacteriophages: biology and applications. 2005;285-96.

Madera C, Monjardín C, Suárez JE. Milk contamination and resistance to processing conditions determine the fate of Lactococcuslactis bacteriophages in dairies. Applied and environmental microbiology. 2004;70(12):7365-71.

del Rio B, Binetti AG, Martin MC, Fernandez M, Magadan AH, Alvarez MA. Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food microbiology. 2007;24(1):75-81.

Schmidt RH, Vargas MM, Smith KL, Jezeski JJ. The effect of ultra‐high temperature milk processing on yogurt texture 1. Journal of Food Processing and Preservation. 1985;9(4):235-40.

Suarez VB, Reinheimer JA. Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcuslactis phages. Journal of food protection. 2002;65(11):1756-9.

Hinrichs J. Incorporation of whey proteins in cheese. International Dairy Journal. 2001;11(4-7):495-503.

Bruttin A, Desiere F, d'Amico N, Guérin JP, Sidoti J, Huni B, Lucchini S, Brüssow H. Molecular ecology of Streptococcus thermophilus bacteriophage infections in a cheese factory. Applied and environmental microbiology. 1997;63(8):3144-50.

Henning DR, Baer RJ, Hassan AN, Dave R. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads. Journal of Dairy Science. 2006;89(4):1179-88.

Madera C, García P, Rodríguez A, Suárez JE, Martínez B. Prophage induction in Lactococcuslactis by the bacteriocinLactococcin 972. International journal of food microbiology. 2009;129(1):99-102.

Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. International journal of food microbiology. 2011;144(3):503-10.

McGrath S, Fitzgerald GF, van Sinderen D. Bacteriophages in dairy products: pros and cons. Biotechnology Journal: Healthcare Nutrition Technology. 2007;2(4):450-5.

Verreault D, Gendron L, Rousseau GM, Veillette M, Massé D, Lindsley WG, Moineau S, Duchaine C. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants. Applied and environmental microbiology. 2011 Jan 15;77(2):491-7.

Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses. Microbiology and molecular biology reviews. 2008;72(3):413-44.

Neve H, Laborius A, Heller KJ. Testing of the applicability of battery-powered portable microbial air samplers for detection and enumeration of airborne Lactococcuslactis dairy bacteriophages. KielerMilchwirtschaftlicheForschungsberichte. 2003;55(4):301-15.

Teuber M, Lembke J. The bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci. Antonie van Leeuwenhoek. 1983;49(3):283-95.

Mistry VV, Kosikowski FV. Influence of milk ultrafiltration on bacteriophages of lactic acid bacteria. Journal of dairy science. 1986;69(10):2577-82.

Hargrove RE, McDonough FE, Tittsler RP. Phosphate heat treatment of milk to prevent bacteriophage proliferation in lactic cultures. Journal of Dairy Science. 1961;44(10):1799-810.

Müller-Merbach M, Neve H, Hinrichs J. Kinetics of the thermal inactivation of the Lactococcuslactis bacteriophage P008. The Journal of dairy research. 2005;72(3):281

Moroni O, Jean J, Autret J, Fliss I. Inactivation of lactococcal bacteriophages in liquid media using dynamic high pressure. International Dairy Journal. 2002;12(11):907-13.

Whitman PA, Marshall RT. Isolation of psychrophilic bacteriophage-host systems from refrigerated food products. Applied microbiology. 1971;22(2):220-3.

Ellis DE, Whitman PA, Marshall RT. Effects of homologous bacteriophage on growth of Pseudomonas fragi WY in milk. Applied microbiology. 1973;25(1):24-5.

Patel TR, Jackman DM. Susceptibility of psychrotrophic pseudomonads of milk origin to psychrotrophic bacteriophages. Applied and environmental microbiology. 1986;51(2):446-8.

Sieuwerts S, De Bok FA, Hugenholtz J, van HylckamaVlieg JE. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Applied and environmental microbiology. 2008;74(16):4997-5007.

Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. Journal of Dairy Science. 2009;92(2):477-82.

Soomro AH, Masud T. Selection of yoghurt starter culture from indigenous isolates of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus on the basis of technological properties. Annals of microbiology. 2008;58(1):67-71

Skriver A, Stenby E, Folkenberg DM, Runge M, Jensen NB. Tools in the development of future starter cultures for fermented milk. InFermented milk: Proceedings of the IDF Seminar on Aroma and Texture of Fermented Milk held in Kolding, Denmark, June 2002 2003 (pp. 55-61). International Dairy Federation.

Mills S, Griffin C, O’Sullivan O, Coffey A, McAuliffe OE, Meijer WC, Serrano LM, Ross RP. A new phage on the ‘Mozzarella’block: bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. International dairy journal. 2011;21(12):963-9.

Viscardi M, Capparelli R, Di Matteo R, Carminati D, Giraffa G, Iannelli D. Selection of bacteriophage-resistant mutants of Streptococcus thermophilus. Journal of microbiological methods. 2003;55(1):109-19.

Ma C, Chen Z, Gong G, Huang L, Li S, Ma A. Starter culture design to overcome phage infection during yogurt fermentation. Food Science and Biotechnology. 2015;24(2):521-7.

Ayala-Hernandez I, Goff HD, Corredig M. Interactions between milk proteins and exopolysaccharides produced by Lactococcuslactis observed by scanning electron microscopy. Journal of dairy science. 2008;91(7):2583-90.

Hinrichs J. Incorporation of whey proteins in cheese. International Dairy Journal. 2001;11(4-7):495-503.

Atamer Z, Samtlebe M, Neve H, Heller KJ, Hinrichs J. elimination of bacteriophages in whey and whey products. Frontiers in microbiology. 2013;4:191.

Walstra P, Wouters JT, Geurts TJ. Milk components. Dairy science and technology. 2006;2:17-08.

Whitehead HR, Hunter GJ. 322. Bacteriophage infection in cheese manufacture. Journal of Dairy Research. 1945;14(1-2):64-80.

Asmat TM. Campylobacter-Review on its Significance as a Foodborne Pathogen. Pak-Euro Journal of Medical and Life Sciences. 2020 Sep 30;3(3):131-7.

Modi R, Hirvi Y, Hill A, Griffiths MW. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. Journal of food protection. 2001;64(7):927-33.

Carlton RM, Noordman WH, Biswas B, De Meester ED, Loessner MJ. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology. 2005;43(3):301-12.

Günther S, Loessner MJ. Bacteriophages control listeria. Alimenta. 2006; 2006 (24): 4-6

Feirtag JM, McKay LL. Thermoinducible lysis of temperature-sensitive Streptococcus cremoris strains. Journal of dairy science. 1987;70(9):1779-84.

McIntyre K, Heap HA, Davey GP, Limsowtin GK. The distribution of lactococcal bacteriophage in the environment of a cheese manufacturing plant. International Dairy Journal. 1991;1(3):183-97.

Atamer Z, Hinrichs J. Thermal inactivation of the heat-resistant Lactococcus lactis bacteriophage P680 in modern cheese processing. International dairy journal. 2010;20(3):163-8.

Schmidt S, Kauling J. Process and laboratory scale UV inactivation of viruses and bacteria using an innovative coiled tube reactor. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 2007;30(7):945-50.

Schmidt VS, Kaufmann V, Kulozik U, Scherer S, Wenning M. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. International journal of food microbiology. 2012;154(1-2):1-9.

Marcó MB, Moineau S, Quiberoni A. Bacteriophages and dairy fermentations. Bacteriophage. 2012;2(3):149-58.

Szczepankowska AK, Górecki RK, Kołakowski P, Bardowski JK. Lactic acid bacteria resistance to bacteriophage and prevention techniques to lower phage contamination in dairy fermentation. Lactic Acid Bacteria-R & D for Food, Health and. 2013;30:23-71.

Labrie S, Moineau S. Bacteriophages in industrial food processing: incidence and control in industrial fermentation. Bacteriophages in the Control of Food‐and Waterborne Pathogens. 2010;18:199-216.

Thunell RK, Sandine WE, Bodyfelt FW. Phage-insensitive, multiple-strain starter approach to Cheddar cheese making. Journal of Dairy Science. 1981;64(11):2270-7.

Sturino JM, Klaenhammer TR. Bacteriophage defense systems and strategies for lactic acid bacteria. Advances in applied microbiology. 2004;56:332-78.

Hicks CL, Clark-Safko PA, Surjawan I, O’Leary J. Use of bacteriophage-derived peptides to delay phage infections. Food research international. 2004;37(2):115-22.

Downloads

Published

2021-05-23