Halophilic Fungi: Versatile Microorganisms for Biotechnological Advancements


  • Shamsuddin Iqbal Institute of Biochemistry, University of Balochistan, Pakistan
  • Muhammad Sharif Hasni Institute of Biochemistry, University of Balochistan, Pakistan
  • Yasmeen Malik Institute of Biochemistry, University of Balochistan, Pakistan and Mines and Minerals Development Department, Government of Balochistan, Pakistan
  • Salman Baloch Institute of Biochemistry, University of Balochistan, Pakistan
  • Rida Aamir Institute of Biochemistry, University of Balochistan, Pakistan




Halophilic, Biotechnology, Bioremediation, Polycyclic aromatic hydrocarbons(PAH), Immuno-suppressant


A genus of fungus known as halophilic fungi has evolved special adaptations to thrive in high-salt settings including salt flats, salty lakes, and marine ecosystems. Their potential uses in a variety of industries, including biotechnology, bioremediation, and medicines, have been shown by recent investigations. Halophilic fungi are employed in biotechnology to create enzymes that may be used in industrial processes, such as amylase, protease, and lipase. They can also support bioremediation by reducing pollutants like polycyclic aromatic hydrocarbons (PAHs) and oil spills, offering a more eco-friendly option to traditional remediation techniques. Halophilic fungi generate secondary metabolites having potential medicinal uses, such as antibiotics, anticancer drugs, and immuno-suppressants. More investigation into halophilic fungi is necessary given their potential to offer environmentally acceptable solutions to industrial and environmental problems.


Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A. Fungal adaptation to extremely high salt concentrations. In Advances in applied microbiology. Academic Press.2011;77:71-96.

Ma LJ, Rogers SO, Catranis CM, Starmer WT. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia. 2000;92(2):286-95.

Chávez R, Fierro F, García-Rico RO, Vaca I. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in Microbiology. 2015;6:903.

Oren A. Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquatic Microbial Ecology. 2009;56(2-3):193-204.

Boumaaza B, Gacemi A, Benzohra IE, Benada MH, Boudalia S, Belaidi H, Khaladi O. International Journal of Agriculture and Biosciences. Int J Agri Biosci. 2022;11(3):139-47.

Yadav D, Singh A, Mathur N. Halophiles-a review. Int. J. Curr. Microbiol. App. Sci. 2015;4(12):616-29.

De Hoog S, Zalar P, Van Den Ende BG, Gunde-Cimerman N. Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. 2005:371-95.

Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E. Microbial community of salt crystals processed from Mediterranean seawater based on 16S rRNA analysis. Can J Microbiol. 2010;56:44–51.

Bakke P, Carney N, Deloache W, Gearing M, Ingvorsen K, Lotz M, McNair J, Penumetcha P, Simpson S, Voss L, Win M, Heyer LJ, Campbell AM. Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS One. 2009;4:6291.

Berquist BR, Müller JA, DasSarma S. 27 genetic systems for halophilic archaea. InMethods in microbiology. Academic Press. 2006;35:649-680.

Paul S, Bag SK, Das S, Harvill ET, Dutta C. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome biology. 2008;9(4):1-9.

Oren A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Frontiers in microbiology. 2013;4:315.

Schäfer G, Engelhard M, Müller V. Bioenergetics of the Archaea. Microbiology and molecular biology reviews. 1999;63(3):570-620.

Talon R, Coquelle N, Madern D, Girard E. An experimental point of view on hydration/solvation in halophilic proteins. Frontiers in microbiology. 2014;5:66.

Ali I, Akbar A, Anwar M, Prasongsuk S, Lotrakul P, Punnapayak H. Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. BioMed research international. 2015;2015.

Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A. Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS microbiology Ecology. 2000;32(3):235-40.

Gunde-Cimerman N, Ramos J, Plemenitaš A. Halotolerant and halophilic fungi. Mycological research. 2009;113(11):1231-41.

Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar. 2005;48:73–79.

Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems. 2008;4:1-3.

Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One. 2013;8(8):e71328.

Tiquia SM. Salt-adapted bacteria isolated from the Rouge River and potential for degradation of contaminants and biotechnological applications. Environ Technol. 2010;31:967–978

Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol. 2010;31:825–834.

Udhyakumar K, Ramalingam S, Saravanan R, Dheeba B. Extraction of Actinomycetes (Streptomyces sp.) pigment and evaluation of its anticancer propertyon HeLa cell line. Der Pharma Chemica. 2017;9(24):106-13.

Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS, Ullah S, Sajid S, Ali I. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere. 2018;199:218–222.

Sepcic K, Zalar P, Gunde-Cimerman N. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs. 2011;9:43

Corral P, Esposito FP, Tedesco P, Falco A, Tortorella E, Tartaglione L, Festa C, D’Auria MV, Gnavi G, Varese GC, de Pascale D. Identification of a sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: A new polyextremophilic marine fungus from Barents Sea. Marine Biotechnology. 2018;20:502-11.

Xiao L, Liu H, Wu N, Liu M, Wei J, Zhang Y, Lin X. Characterization of the high cytochalasin E and rosellichalasin producing-Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World Journal of Microbiology and Biotechnology. 2013;29:11-7.

Zhao DL, Wang D, Tian XY, Cao F, Li YQ, Zhang CS. Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Marine drugs. 2018;16(1):36.

Ali I, Siwarungson N, Punnapayak H, Lotrakul P, Prasongsuk S, Bankeeree W, Rakshit SK. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province. Thail Pak J Bot. 2014;46:983–988

Xiao L, Liu H, Wu N, Liu M, Wei J, Zhang Y, Lin X. Characterization of the high cytochalasin E and rosellichalasin producing Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J Microbiol Biotechnol. 2013;29:11–17.

Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC genomics. 2013;14(1):1-21.

Molchanova N, Nielsen JE, Sørensen KB, Prabhala BK, Hansen PR, Lund R, Barron AE, Jenssen H. Halogenation as a tool to tune antimicrobial activity of peptoids. Scientific reports. 2020 Sep 9;10(1):14805.

Díaz-Cárdenas C, Rojas LY, Fiorentino S, Cala MP, Díaz JI, Ramos FA, Armengaud J, Restrepo S, Baena S. Bioactive potential of extracts of labrenzia aggregata strain USBA 371, a halophilic bacterium isolated from a terrestrial source. Molecules. 2020;25(11):2546.

Jančič S, Frisvad JC, Kocev D, Gostinčar C, Džeroski S, Gunde-Cimerman N. Production of secondary metabolites in extreme environments: food-and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One. 2016;11(12):e0169116.

Giacomazzi, S. and Cochet, N. Environmental impact of diuron transformation: a review. Chemosphere. 2004;56: 1021–1032.

Peidro‐Guzmán H, Pérez‐Llano Y, González‐Abradelo D, Fernández‐López MG, Dávila‐Ramos S, Aranda E, Hernández DR, García AO, Lira‐Ruan V, Pliego OR, Santana MA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environmental Microbiology. 2021;23(7):3435-59.

Jiang Y, Shang Y, Yang K, Wang H. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl Microbiol Biotechnol. 2016;100:1883–1890.

Gunny AAN, Arbain D, Edwin Gumba R, Jong BC, Jamal P. Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresour Technol. 2014;155:177–181.

Ali I, Khaliq S, Sajid S, Akbar A. Biotechnological applications of halophilic fungi: past, present, and future. Fungi in extreme environments: Ecological role and biotechnological significance. 2019:291-306.

Zhao DL, Wang D, Tian XY, Cao F, Li YQ, Zhang CS. Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Marine drugs. 2018;16(1):36.

Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H. Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Management Science: formerly Pesticide Science. 2000;56(5):455-62.

Cameron, M.D., Timofeevski, S., and Aust, S.D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology. 2000;54:751–758.