Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoretic Expression of Serologic Proteins from Sera of Patients with Gastric Cancer

Iqra Ayub¹, Zunera Tanveer², Hina Sadaf³, Irshad Ahmad⁴, Numan Liaquat⁵, Roha Talat¹, Hafiz Muhammad Ali⁶, Muhammad Yousaf¹ and Asadullah¹*

¹Center for Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan, Quetta, Pakistan.
²Department of Physiology, Bolan University of Medical and Health Sciences, Quetta, Pakistan.
³Department of Physiology, Avicenna Medical College, Lahore, Pakistan.
⁴Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber medical University, Peshawar, Pakistan.
⁵Surgical Unit 2, Allied Hospital, Faisalabad, Pakistan.
⁶University college of Veterinary Sciences, The Islamia University of Bahawalpur, Pakistan.

* Corresponding author: assad1556@yahoo.com

Abstract

Gastric cancer (GC) is the second most common malignancy worldwide and fourth in prevalence between all cancers, globally. In recent studies, GC accounts for 8% of the total cancer cases, 10% of the deaths for all cancers, and 70% of the cases occurring in developing countries. There are different proteins with different concentrations present in human serum, post-translation modifications or aberrant expression of these proteins are reported as signs which indicate the process of carcinogenesis in human body. The aim of the present study was to profile the differentially expressed serologic proteins using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis. In this study fifty serum samples of gastric cancer patients and ten healthy donors were screened by SDS PAGE to estimate the expression of proteins and to compare the up regulation of these proteins with the healthy donors used as control. The result showed that three different proteins were differentially expressed in GC patients while comparing with healthy donors used as control which can be further used as biomarkers to diagnose gastric cancer in its early stages.

Keywords: Gastric cancer, Biomarkers, SDS-PAGE

INTRODUCTION

Gastric cancer (GC) is the second most common malignancy worldwide (1). In recent studies, GC accounts for 8% of the total cancer cases, 10% of the deaths for all cancers (2) and 70% of the cases occurring in developing countries (3). These gastric cancer cases are due to Helicobacter pylori infection prevalence and nutritional routine. Changes in nutritional routine, improvement of can foods, reduction in smoking and significant decrease in H. pylori chronic infections lead to low GC incidence in developed countries (3). The small percentage of gastric cancer have a familial component, with an autosomal pattern of inheritance and majority of stomach tumors are sporadic (4). Most of the incidence of gastric cancer are diagnosed at later stages when treatment and cure become almost impossible (5). Therefore, it is important to search new non-invasive biomarkers for the early detection of GC (6).

Peptides present in human serum have been used as a biomarker for the identification of gastric cancer (7). Carbohydrate antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA), carbohydrate antigen 72-4 (CA 72-4) are the most common biomarkers available for GC (8).

The survival rates for gastric cancer can be improved by early diagnosis and with proper treatment. Previous studies revealed several serum biomarkers for gastric cancer such as: CA 72-4, cancer antigen (CA) 19-9 and carcinoembryonic antigen, but sensitivity of these serum biomarkers is (20%-30%) lower in diagnosis of gastric cancer as compared to other cancers (9, 10). It is essential to explore suitable biomarkers for the identification of GC (11).

Proteomic based techniques are used to detect and measure proteins that can be used as biomarkers in tissues and body fluids in GC. Protein chip array, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and Two-dimensional electrophoresis (2-DE) are the proteomic based techniques used for the detection of GC (8).

The aim of the present study was to predict the cellular proteins as diagnostic biomarkers recognized by autoantibodies.
in gastric cancer patients and to profile the differentially expressed proteins using Gel Electrophoresis.

MATERIALS AND METHODS

Sample Collection

Fifty serum samples were obtained from gastric cancer patients and 10 serum samples were taken from healthy donors used as control from Bolan Medical College Hospital Quetta (BMCH). Falcon tubes without anticoagulant were used to collect the serum samples. The blood samples of gastric cancer patients were centrifuged at 12000 rpm for 5-10 min to separate serum and then the separated serum samples were stored at -80°C. According to the standard protocol, the estimation of protein concentration in collected serum samples were determined by using BCA protein kit (BOSTER) as per manufacturer instructions.

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS–PAGE)

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate proteins on the bases of their molecular weight. The proteins were denatured by heating the samples and the unfolded proteins were coated with SDS detergent molecules which gives negative charge to the proteins. For electrophoresis, Omni PAGE Mini (cleaver scientific Ltd.) system was used. In electrophoresis, two types of Polyacrylamide gels (resolving and stacking gel) were casted and serum samples were loaded after gel polymerization. The components used in polyacrylamide gels are as follows: Resolving gel (12% polyacrylamide), Tris 1.5M pH = 8.8 (Molecular Biology Grade) 25%(v/v) , SDS 10% (Bio-Rad Laboratories, Inc.) 1%(v/v), TEMED (Sigma Aldrich Co., Ltd.) 0.05%(v/v), ammonium persulfate10% (Prochem, Inc.-Rockford, IL)0.5%(v/v) and in Stacking gel (4% polyacrylamide), Acrylamide (30%), Bisacrylamide (0.8%) 13.3%(v/v) , Tris 0.5M pH = 6.8 (Molecular Biology Grade) 25%(v/v), SDS 10% (Bio-Rad Laboratories, Inc.) 1%(v/v), TEMED (Sigma Aldrich Co., Ltd.) 0.05%(v/v), Ammonium persulfate10% (Prochem, Inc.-Rockford, IL) 0.5%(v/v). To visualize the protein bands, Coomassie brilliant blue (Abbexa Ltd.) staining technique was used and images of stained gels were captured by using Transilluminator apparatus (BIOBASE).

RESULTS AND DISCUSSION

Different protein bands with weak and strong intensities were detected by SDS-PAGE in the presence of β-mercaptoethanol with little or no visible presence in normal as well as in patient’s sera but may have the properties of having an electrophoresis profile which are related to a clinical condition. The purpose of the study of protein profiles obtained by SDS-PAGE was to predict biomarkers capable of differentiating the appearance of a pathological condition.

In this study fifty serum samples of gastric cancer patients and 10 healthy donors were screened by SDS PAGE to observe the differential expression of proteins. The results shown that the bands of 34, 37, 45, 55 and 200 kDa were differentially stained in GC patient’s sera comparing normal healthy sera (Fig 1a, b). A 55 kDa thick band was seen in 74% (n=37) of GC patient’s sera but this band was not observed in healthy donor’s sera. Regulation of CALR (55-kDa protein, calreticulin) was observed in gastric cancer tissues by Ferlay J, et al (1) by western blotting analysis. The 55 kDa band we observed might corresponds to the same protein CALR. In this study several proteins were separated by SDS-PAGE in the sera of patients diagnosed with GC as compared to the control group. A band of 200 kDa in 54% (n=27) of GC patient’s sera was observed, this band might correspond to carcinoembryonic antigen (CEA). While comparing the sensitivity of CEA (40% and 100%), CA 72-4 (28% and 51.3%) and CA 19-9(5.6% and 68.2%) CEA has the highest sensitivity both in early and advanced stages of gastric cancer (12).

Carcinoembryonic antigen, a glycoprotein present on the cell surface, having a role in intracellular signaling, cell adhesion, and tumor progression(13). It is implicated as an oncogene by promoting cancer progression (14)CEA, as a tumor marker, firstly identified in 1965 (15) and in 1980. This protein was functional for the early diagnosis of GC (16). It is the most valuable serum protein marker used to diagnose gastric cancer at its early stage and to identify patients that have chances of developing GC. In previous studies, Kochi et al. (17) proved that patients with high carcinoembryonic antigen (CEA) levels in their serum have high risk of having reappearance of the disease than the normal subjects. Kosugi et al. (18) proposed that CEA levels in serum may be functional mostly in forecasting clinically inapparent metastasis and in GC, carcinoembryonic antigen (CEA) sensitivity was 30%.
which denies Hwang et al. (19) results (15.4% CEA sensitivity) stating that the sensitivity of CEA was not enough and beneficial in the detection of recurrence in GC patients.

A band of 80 kDa (stained with strong to moderate intensity) was observed in 52% (n=26) sera of GC patients in this study, this band resembles 80 kDa protein fragment, Soluble E-cadherin (sE-cad). In the results of this study the 80 kDa protein band was also stained with a pool of control sera, the reason of this discrepancy was the limitations of the technique used. Since SDS-PAGE gives a matrix of separated proteins according to their molecular weight, while the Western blotting analysis provides confirmation of the separated proteins. We did not use Western blotting technique in our experiments might be described as Soluble E-cadherin (sE-cad) can be used as a biomarker in prognosis, diagnosis and tumor reappearance of GC. Recently, the studies show that in GC, E-cadherin acts as a tumor suppressor gene and plays an initial and significant role in carcinogenesis (20).

A staining pattern of 34 kDa protein band was also observed in this study. Sera of 40% (n=20) GC patients were stained with this 34 kDa band. Do Hee et al. identified a protein spot of 34.3 kDa molecular weight as D-site binding protein by MALDI-TOF mass spectrometry from the cells of human GC patient’s proteome and a metastatic OCUM-2MLN cell line (21). In epidermal cells of mice, increased expression of D-site binding protein was observed to be associated with bFGF-regulated anchorage-independent growth response (22). Nevertheless, to establish the correlation of DBP expression with growth and/or metastasis of transformed cells, more evidences are still to be investigated. Another protein, aspartate aminotransferase (44.6 kDa molecular weight) was also identified by same group (21) in the same experiments performed on the human gastric cancer cell lines. A relatively identical band of 45 kDa was detected in our study by SDS-PAGE. Sera of 38% (n=19) GC patients were stained with the 45 kDa protein band with strong intensity.

Though, serum analysis is analytically difficult due to the high dynamic range of the proteins (23, 24). So other techniques like western blotting and dot blotting are required to further classified the high and low molecular weight serum proteins. In proteomics, advanced high-throughput techniques have become more successful to identify novel biomarkers for human cancers. There are several biomarkers used for the diagnosis of gastric cancer. Recently, the studies show that in GC, E-cadherin acts as a tumor suppressor gene and plays an initial and significant role in carcinogenesis (20).

Gene Ontology Analysis

Gene Ontology analysis was performed by using PANTHER (www.pantherdb.org) Classification System which classifies proteins to facilitate high-throughput analysis. Proteins were classified according to their molecular functions, biological process, cellular component, protein pathways and protein class. The most common molecular function of proteins in GC patient’s sera were 25% binding property and 75% catalytic activity. The cell component carries 28.6% cell part, 14.3% cell junction, 14.3% macromolecular complex, 14.3% membrane and 28.6% organelle. The major biological processes were 12.5% biological adhesion, 12.5% cellular component organization or biogenesis, 25% multicellular organismal process, 25% cellular process, 12.5% developmental process and 12.5% metabolic process.

PANTHER classification identified 5 pathways with signaling mechanisms 20% Alzheimer disease-preseilin, 20% Asparagine and aspartate biosynthesis, 20% CCKR signaling

Fig. 2. Gene Ontology classification of proteins according to their A. molecular functions, B. biological process, C. cellular component, D. protein pathways, E. protein class using PANTHER classification system.
map, 20% Cadherin signaling, 20% Wnt signaling and the protein classes were 50% calcium ion binding, 25% nucleic acid binding and 25% protein binding (Fig. 2).

CONCLUSION

It is concluded that these proteins might play an important role in carcinogenesis during the transition phase and the autoantibodies against these proteins are generated long before the clinical appearance of the disease. Hence, the autoantibodies to these antigens might be used as diagnostic biomarkers for early detection of gastric cancer. New biomarkers need to be identified and tested to determine their correlation with clinical parameters and predictions.

REFERENCES