Conventional and Molecular Based studies on Trichomonas vaginalis in Quetta, Balochistan

Shaista Nasir Khan1, Saadullah Jan1, Abdul Samad1, Irfan Shahzad sheikh1, Ashiq Hussain2, Yasmeen Lashari2, Mohammad Deen2 and Mir Abdul Qadir3.

1Center of Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan (UBO), Quetta, Pakistan
2Bolan Medical Complex Hospital (BMCH), Quetta, Pakistan
3Institute of Public Health, Quetta, Pakistan

*Corresponding author: saadcasvab@gmail.com

Abstract

This study was designed to investigate the prevailing status of Trichomonas vaginalis, a protozoan parasite causing urogenital tract infections in human beings, in Quetta, Balochistan, Pakistan. As no documented study of this kind has been conducted so far, it was designed to obtain the overall prevalence of T.vaginalis infection. Through conventional wet mount technique, its morphological identification by staining techniques and with PCR confirmation. In addition to investigation of age-wise and gender-wise prevalence of T.v, its correlation with reproductive disorders was also investigated through a questionnaire proforma while taking urine samples. For this purpose six hundred (600) urine samples (300 samples from each gender) were collected from the public sector hospitals located in Quetta city. The study was designed in three age groups as G1: 21-30, G2: 31-40, and G3: 41-50 years of each gender. A total of four samples were found positive microscopically only in female patients, whereas three of these positive samples were confirmed as T. vaginalis by PCR using BTUB9/2 set of primers. The fourth positive sample might be the specie other than T.vaginalis. It is concluded that the overall prevalence of T.v amongst females was observed as 0.1%, while the samples from males were found negative for T.v so the overall percentage in total samples found as 0.5%.

Keywords: Trichomonas vaginalis, urine sample, Microscopy, PCR, Prevalence.

INTRODUCTION

Trichomonas vaginalis is a flagellated protozoan parasite, mostly exists as pyriform shaped but sometimes it acquires amoebic morphology. It lives extracellular in genitourinary track epithelium with proper anaerobic in existence [15]. T. vaginalis is distributed worldwide and it prevails in developed countries between women and men about 5% to 20% and 2%- 10%, respectively [11]. TV is ordinary non-viral sexually transmitted infection (STI) across the globe, World Health Organization (WHO) projected that there were 276.4 million cases reported in 2008 and about 90 % of disease took place in those whose livelihood means were in lesser quantity. This infection occurs higher than Chlamydia trachomatis, Neisseria gonorrhoeae, and syphilis. World wide it prevails 8.1 % in females and 1.0 % in males [29]. This study was designed to investigate the prevailing status of Trichomonas vaginalis in Quetta, Balochistan, Pakistan. We designed the study to investigate the overall prevalence of T. vaginalis infection through conventional wet mount technique, its morphological identification by staining techniques and by PCR confirmation. In addition to investigation of age-wise and gender-wise prevalence of T. vaginalis, its correlation with reproductive disorders was also investigated.

Table 1. PCR reaction mixture.

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Quantities used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master mix</td>
<td>10 μl</td>
</tr>
<tr>
<td>BTUB9_R_F</td>
<td>1 μl</td>
</tr>
<tr>
<td>BTUB2_R_R</td>
<td>1 μl</td>
</tr>
<tr>
<td>DNA Template</td>
<td>3 μl</td>
</tr>
<tr>
<td>Molecular grade water</td>
<td>5 μl</td>
</tr>
</tbody>
</table>

Total volume of reaction  20 μl

A total 20 μl reaction mixture was taken to obtain the PCR product.

Table 2. Cycling conditions of PCR

<table>
<thead>
<tr>
<th>Stages</th>
<th>Steps</th>
<th>Temperatures</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold1</td>
<td>Initial Denaturation</td>
<td>95 °C</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>95 °C</td>
<td>45 sec</td>
</tr>
<tr>
<td>45 cycles</td>
<td>Annealing</td>
<td>58.1 °C</td>
<td>45 sec</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>72 °C</td>
<td>1 min</td>
</tr>
<tr>
<td>Hold 2</td>
<td>Final Extension</td>
<td>72 °C</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>

45 cycles were carried out on the mentioned temperatures.
Examples of male patients (300 samples) were also collected which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epidemiological Parameters

Overall Prevalence

The overall prevalence of *T. vaginalis* was estimated in the studied population as a base line study because there is no documented study of the same kind conducted in this study area.

Age-wise Prevalence

The rate of prevalence was studied in different age groups in the study population. For this purpose three age groups were selected as G1: 21-30 years of age, G2: 31-40 years of age and G3: 41-50 years of age.

Gender-wise Prevalence

The rate of prevalence of *T. vaginalis* was studied both in female and male patients in the study population. For this purpose urine samples from male and female patients were compared and data was recorded.

Molecular Techniques for identification of *T. vaginalis* from urine samples

DNA Extraction

Microscopically confirmed samples were subjected to DNA extraction and PCR. For this purpose urine samples were centrifuged and the sediments containing the organism were used for DNA extraction. The Boiling technique was used for DNA extraction [19] [25].

PCR

BTUB 9/2 which are 100% species specific oligonucleotide primers and 100% sensitive with 112 bp were designed [8]. Conventional PCR was performed to amplify genes of interest, as follows;

The reaction was performed in a total volume of 20μl reaction mixture. PCR reaction mixtures and the PCR cycling conditions tabulated in table 1 and 2.

Gel Electrophoresis

1. Five μl of obtained product was confirmed through 2% Gel electrophoresis
2. The PCR product was electrophoresed and later visualized in UV illuminator to observe the amplified product [25].

Statistical Analyses

The data was analyzed by descriptive statistics as percentage prevalence of the study.

RESULTS

Collection of samples: study area, sample size and study design.

In the current study a total of 600 urine samples (300 samples each gender) were collected randomly from patients visiting public sector hospitals at Quetta, Balochistan. While attending gynecological OPD, female patients were investigated for relative gynecological problems, relative sign symptoms and took urine samples (300 Samples). Moreover, urine samples of male patients (300 samples) were also analyzed for TV, received in the Microbiology/Pathology laboratories of the public sector hospitals for routine microscopy of urology.

All informative data regarding age, gender, history and types of reproductive disorders in females were collected on a questionnaire prepared for the said purpose.

Conventional techniques for isolation and identification of *T. vaginalis* from urine samples.

Fresh urine samples taken were processed and examined microscopically by wet mount technique for motility and staining for specie identification [16, 28, 30].

Epidemiological Parameters

Overall Prevalence

The overall prevalence of *T. vaginalis* was estimated in the studied population as a base line study because up to date there is no documented study of the same kind conducted in this study area.
identification. The prevalence of *T. vaginalis* was recorded. The duration of the study was almost three months period from May 4th to July 29th 2019.

Epidemiological Parameters

Age wise and Gender wise prevalence

The age groups amongst male and females were designed as follows Table 3 and 4.

In the current study three samples were positive microscopically amongst 300 females. The rest of 300 male patients samples were negative microscopically. The percentages were calculated accordingly (Table 3 and 4).

In female, the first age group designated was 21-30 years of age with a total of 100 patients amongst whom one sample was positive with a percentage of 1% whereas in group second designated as 31-40 years of age contained 100 patients with 1 positive case and the percentage was found as 1% and in the third age group designated as 41-50 years of age contained 100 patients in which 1 case was recorded to be positive and the percentage observed was 1%. All positive cases lied between the ages of 25, 30, 31, 45 years with relevant notable signs & symptoms of reproductive disorders, including burning and itching.

The overall frequency amongst females was observed as 1% while that of males triggered during the study was noticed as zero, so the overall percentage in total samples was found as 0.5%.

Molecular Techniques for identification of *T. vaginalis* from urine samples

DNA Extraction

Microscopically confirmed samples were subjected to DNA extraction and PCR. Positive urine samples were centrifuged and the sediments containing the organism were used for DNA extraction. Rapid boiling technique was used to collect DNA for PCR analysis [19, 25].

PCR

BTUB9/2 gene was targeted to capture the parasitic DNA amplification that showed the following results. Out of four positive samples three were found positive for *Trichomonas Vaginalis* where as one did not match the desired bp size.

Gel Electrophoresis

DNA obtained was confirmed through gel electrophoresis and further the obtained DNA was amplified via conventional PCR. The PCR product was electrophoresed and later visualized in UV illuminator to observe the amplified product.

DISCUSSIONS

Numerous studies have been conducted by many researchers on *Trichomonas vaginalis* around the globe to study its prevalence, genotypic and phenotypic properties. It is a known STD pathogen around the world and is a major cause of human reproductive disorders. Nevertheless, this parasite is present everywhere, and has been isolated from vaginal secretions and urine from humans.

Urine samples were used in the study for the detection of *Trichomonas vaginalis* in both males and females (300 each) as to know the frequency of occurrence in both genders. The study was random, non symptom based and no group relating ethnic, class or society was targeted to observe the occurrence taking in mind the reality that in our society no one admits to volunteer for STD related research. Thus urine was decided to be ideal for detection of this particular pathogen.

We collected 600 samples out of which three (3) were found positive in females while males were found negative, comparing it with a study in Papua New Guinea [7] showed that the male indigenous population had a prevalence of 10.9% compared with a prevalence of 0% in the male white population.

Open usage of self medication like azoles and antibiotics does affect the presence of parasite as during the conduction of study we came across patients who were using the medications that may affected the parasite and may have lowered the prevalence rate. Moreover, we also focused on the frequency of urination at the time of sample collection which also had affect on the prevalence rate of parasite, as the prevalence rate could be high at first urination.

Wet mount microscopic technique was used for the detection of parasite in urine samples as per steps [16] and was observed under 10 x and 40 x within 10 min of collection [28]. Geimsas staining was done as applied by [30] and purple stained organisms were observed under microscope. The same staining technique was also applied earlier [16].

For molecular studies DNA was isolated through rapid boiling technique [19] [25] and the obtained product was observed via gel electrophoresis. BTUB9/2 primers were used to identify the desired species which detected three out of four to be as *Trichomonas vaginalis*, as already used [25] and conventional PCR was carried out to obtain results [25].

Gel electrophoresis was performed by making 2% agarose gel for the detection of results under uv illuminator. The desired base pair sequence was 112bp which was obtained as per procedure [25].

REFERENCES


