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ABSTRACT  

Throughout this paper, the translation effect on the first order polarization tensor 

approximation for different type of objects will be highlighted. Numerical 

integration involving quadratic element as well as linear element for polarization 

tensor approximation will be presented. Here, we used different positions of an 

object of fixed size and conductivity when computing the first order polarization 

tensor. From the numerical results of computed first order polarization tensor, the 

convergence for every translation is observed. Moreover, discretization of the 

geometric objects into triangular meshes was done by using meshing software 

called NETGEN mesh generator while for the numerical computation, MATLAB 

software was used. We found that the translation has no effect on the approximated 

first order PT for sphere and cube after we have computed the first order PT for 

both geometries with a few center of masses. The numerical results of approximated 

first order polarization tensor is plotted by comparing the numerical results with 

analytical solution provided. 
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INTRODUCTION  

In the applications of electric or electromagnetic such as medical imaging and metal 

detection, some properties of an electrical conducting object will be described for 

classification of object purposes. These properties include the material (or the 

conductivity) of the object, size, shape and also the orientation of the object. The object 

could be a tumor with larger value of conductivity than normal tissues in medical 

imaging (1) or a fish hook avoided by electrosensing fish  (2-6) whereas, in metal 

detection, the object could be a buried landmine or a gun carried by a person when 

walking under metal detector (7-13). 

There are probably many approaches exist that can be used to describe these objects 

and their properties. One way to characterize these objects is to implement the 

Polarization Tensor (PT) terminology, as can be seen in the previous listed references. 

This approach seems to offer lower computational cost as it does not require for 

example, complete image of the object to describe the object.  
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In applied mathematics, Ammari and Kang (14), they have shown that the leading 

term of asymptotic expansion that represent the disturbance in electrical field because 

of the existence of object with conductivity is called Generalized Polarization Tensor. 

Given the conductivity and geometry of the object, by solving system of integral 

equation, the associated GPT in the matrix form or in some literatures known as PT 

for object with specific conductivity can be determined. In other words, given GPT 

due to the presence of a known or unknown object, the geometry and conductivity of 

the related object can be described or predicted (15-17).  

PT for an object with some conductivity when presented in the electrical field does not 

give any information about the specific location of the object. Other methods must be 

integrated with PT to locate the object when reconstructing the image of the object 

(14), for example. Similarly, a person can carry a gun at any parts of the body before 

entering a metal detector, and when the gun is detected, the body must be searched 

manually by a security officer.    

Therefore, the translating effect of the object on the computation of its first order PT 

will be investigated throughout this study. Theoretically, as will be stated later on, the 

PT of an object with specific conductivity are independent of the position of the object. 

Therefore, our numerical results on computing the first order PT of an object at 

different locations must be the same or at least, have only very small differences 

between them. This will justify whether our numerical method produces a good 

approximation to the PT. Besides, for some cases, computing the PT of an object at 

different locations will also help to verify that the resulting PT is correct.    

The paper will is organized as follows. First, the background of mathematical term of 

the PT related to the disturbance in electric field because of the existence of object with 

specific conductivity will be reviewed in the next section. From the mathematical 

background, we will explain the translation of the PT and methods used to generate 

the numerical results of each translation. Then, numerical results showing the effect 

of translation on the approximation of the PT will be presented in graphical form. 

Lastly, discussion and some conclusions about the numerical results obtained are 

presented.  

FIRST ORDER POLARIZATION TENSOR FORMULATION 

Polarization tensor as considered here actually initiates from a transmission problem 

of the inverse conductivity equation which has being reviewed by a numbers of 

literatures. Ammari and Kang (14) consider a Lipschitz bounded domain B in 3  

where the origin O is inside the boundary domain B and k will represent the 

conductivity of domain B. The condition of the conductivity k must satisfy the 

condition where, 0 1k   + . By assuming harmonic function, which denotes as H is 

in 3  and the solution of the problem in (1) is u, then  
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where   represents the characteristic function of B. There are numerous industrial 

application that employ the mathematical formulation in (1); for example in medical 

imaging where we can see from Electrical Impedance Tomography (EIT) system, 

material sciences as well as in detection of landmine (1, 14, 18). 

Far-field expansion that represent PT has been introduced by Ammari and Kang (14) 

where it yields to 
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for ,i j that denotes the multi indices, while   is the fundamental solution of the 

Laplacian. ( , )
ij

M k B  is the generalized polarization tensor (GPT) or can be simply called 

as PT. Since GPT can show the conductivity distribution of an object, therefore, 

physicist usually assigned GPT as the dipole in electromagnetic applications. In this 

case, (2) represent the perturbation on the electrical field u because of the presence of 

a conducting object B. 

Furthermore, according to Ammari and Kang, the GPT in (2) can also be defined by 

system of integral equations over the boundary of B which is 

( , ) ( ) ( )
j

ij i

B

M k B y y d y 


= 
                           

(3)
 

where ( )
i

y  is formulated as  
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for ,x y B , I is the identity while x  is the outward normal vector of x to the boundary 

B . In this case, the definition of   is ( 1) / 2( 1)k k = + −  which contain the conductivity, 

k. Singular integral operator, 
*
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K  associated with Cauchy principal value P.V. is given 

and yield to  
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In order to directly compute the PT of B for conductivity k, where k must satisfy 

0 1k   + , we can simply determine it by substituting the conductivity and B to 

equation (3), (4) and (5). 

In this work, we restrict our investigation on the first order PT, when the multi indices 

of GPT is | | | | 1i j= = . Thus, by construction, the first order PT is represented by matrix 

of 3 by 3. If B is a sphere of volume | |B , then from the analytical formula that has been 
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derived and introduced by Ammari and Kang (14), its first order polarization tensor 

will yield to 

3 (2 ) 0 0
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In the next section, we will revise previous theoretical results which suggest that the 

first order PT is independent of the position of B. After that, we explain our numerical 

method for the first order PT approximation for sphere and cube geometries of 

constant density at specified conductivity but with different center of mass.  

METHODOLOGY 

In the previous section, it is required that the origin must be in B but not the center of 

mass for B. So, the center of mass for B can be anywhere when its first order PT is 

computed. The following proposition is considered from the study of Ammari and 

Kang (14), which explains the first order PT is independent of the position of object B. 

Proposition 1 

Let ( , )M k B  be the first order polarization tensor for an object B at conductivity k, 

where 0 1k   +  and z  be a translation vector. If ( , )M k B+z  is the first order PT for B 

after B is translated by z then     

( , ) ( , )M k B M k B+ =z . 

The above proposition specifically tells us that if the center of mass of B is changed, 

then its first order PT will remain the same. If we regard the first order PT as a physical 

parameter of B such as surface area, volume or density, the first order PT is 

independent of position of B. This information is useful to us as it can help us to verify 

whether the first order PT of B that is numerically computed is correct or not; thus, we 

can compare the first order PT for B, computed at two different center of mass and 

ensure that they are the same.  

In general, the first order PT can only be computed by numerical method, except when 

B is a sphere. In this case, finite element approach will be employed to approximate 

the first order PT for sphere and cube based on equations (3), (4) and (5). Here, to 

numerically compute first order PT for sphere and cube geometries, each object will 

be initially created in the software Netgen (19) at a specified center of mass. After that, 

mesh of the object consisting of a set of triangular elements will be automatically 

created by the software. Since the integrals involved as given in (3) and (5) are surface 

integrals, the triangular elements generated are actually the surface elements of the 

object. The required nodes for each triangle given by Netgen will be exported to 

Matlab for computation of the PT by finite element method. For comparison in this 

study, quadratic and linear element which involve six and three nodes in each triangle 

will be used (20).  
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After generating the triangular elements for both objects, their first order PT will be 

computed at a specified conductivity k. The procedures when using linear elements 

are based on Khairuddin and Lionheart (21) and we refer to Reddy (20) when 

developing numerical algorithm with quadratic elements to approximate the first 

order PT. Then, we will increase the size of the mesh with Netgen and repeat the 

processes until satisfactory results are obtained. Usually, the size of mesh must be 

increased until the numerical computations of the first order PT converge to one value. 

The convergence first order PT will then be used as the convergence approximation 

of the first order PT. However, at the moment, approximating the first order PT is time 

consuming because of the large size for the mesh used. So, our results here might only 

be preliminary results.  

For sphere, the error in approximating the first order PT can be computed by 

comparing the approximated first order PT with (6). Since the analytical solution of 

the first order PT for cube geometries has yet to be found, we cannot compute its error. 

However, we can still further investigate what happens to the first order PT 

approximation for both cube and sphere when the center of mass for both objects are 

changed. In order to achieve this, the center of mass for both sphere and cube are 

redefined in Netgen before the new meshes are created for computing the new first 

order PT but still at the same conductivity. Mesh for sphere and cube at a few center 

of masses will be considered in this study when approximating the first order PT for 

both objects.  

NUMERICAL RESULTS AND DISCUSSION 

For the purpose of first order PT approximation for sphere of radius 0.01, at a few 

center of masses, four coordinates are chosen and defined as the center in Netgen. The 

four chosen centers of mass for the sphere are (0, 0, 0) , (0.01, 0, 0) , (0, 0.01, 0)  and (0, 0, 0.01)

. For each sphere with different center of mass, the meshes are then generated in 

Netgen and surprisingly, the size for the mesh for each sphere can still be the same. 

As the positions of each sphere are different from each other, the nodes for the 

triangular elements will be different although the total elements are the same. For the 

computation purposes, the sizes of the mesh for each sphere used are 620 , 2480 and 

9920 . 

Using the generated meshes, the first order PT for the sphere are numerically 

approximated at conductivity 1.5k = . After that, the error for each computation will 

be computed. If M̂  is the approximated first order PT for sphere and M is the first 

order PT for sphere given by (6), then the error, e is given by  

2

2

ˆ|| ||

|| ||

M M
e

M

−
= .                              (7) 

where for a 3 3  matrix A, 
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and 
ij

a  are the elements of the matrix A. Fig. 1 then shows the error against total 

surface elements of the approximated first order PT for sphere of radius 0.01 at 

conductivity, 1.5k =  when the center of mass for the sphere are respectively (0, 0, 0) , 

(0.01, 0, 0) , (0, 0.01, 0)  and (0, 0, 0.01) . As we can see in all graphs of Fig. 1, the error 

decreases as the total surface elements increase in approximating the first order PT for 

each sphere and the error when using quadratic elements for the sphere is smaller 

than the linear elements for each mesh, as expected.  

Now, in order to study the translation effect on the approximated first order PT, 

graphs in Fig. 2 are plotted. These graphs show the average of the elements, a for the 

approximated first order PT, M̂  against the total surface elements for each mesh used. 

In this case, a is computed by the formula 

( )
3 3

1 1

1
ˆ

9
ij

i j

a m
= =

=
 
 
 
               (9) 

where ˆ
ij

m  are the elements of the matrix M̂ . Based on the graphs, we have noticed 

that a increases when M is computed either by linear or quadratic elements increased. 

Both average approach to the straight line which represents the average elements of 

the first order PT for the sphere computed based on the analytical formula (6). It is 

expected that, for each mesh, a computed based on M that is approximated by 

quadratic elements (Quad) are closer to the straight line than a computed based on M

that is approximated by linear elements (Lin).  Moreover, it is also observed that, for 

each mesh, the average elements  of  M are all the same when M are approximated by 

both linear or quadratic elements although the center of mass for the sphere are (0, 0, 0)

, (0.01, 0, 0) , (0, 0.01, 0)  and (0, 0, 0.01) .         

      
          (a)        (b) 
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          (c)        (d) 

Fig. 1. The error, e against the total surface elements in approximating the first order PT for sphere of radius 0.01 

at conductivity 1.5k =  where the center of the mass for the sphere are respectively (a) (0, 0, 0) , (b) (0.01, 0, 0) , 

(c) (0, 0.01, 0)  and (d) (0, 0, 0.01)      

Finally, Fig. 3 shows the average of the elements for the approximated first order PT 

for cube against the total surface elements for each mesh used. Here, the total surface 

elements or the size of the mesh for the cube generated automatically in Netgen are 

192, 768, and 3072. In addition, the first order PT for the cube of size 0.04 0.04 0.04  , in 

this case, are approximated based on (3), (4) and (5) also at conductivity 1.5k = . 

However, only quadratic elements are used during the numerical approximation. 

Here, it is found that, for each mesh, the average elements of first order PT 

approximation for cube resulted in similar number of mesh although the center of 

mass for the cube are (0, 0, 0) , ( 0.02, 0, 0)−  and (0.02, 0.02, 0.02) .   

 
Fig. 2. The average elements, a of the approximated first order PT by both linear and quadratic elements against 

the total surface elements for the mesh. The first order PT for sphere of radius 0.01 at conductivity 1.5k =  are 

http://creativecommons.org/licenses/by/3.0/
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approximated when the center of the mass for the sphere are respectively (0, 0, 0) , (0.01, 0, 0) , (0, 0.01, 0)  and 

(0, 0, 0.01) . The straight line represents the average elements of the first order PT for sphere computed based on 

the analytical formula (6).     

 
Fig. 3. The average elements, a of the approximated first order PT by quadratic elements for cube (size 

0.04 0.04 0.04   and conductivity 1.5k = ) against the total surface elements for the mesh, where, the center of 

the mass for the cube are respectively (0, 0, 0) , ( 0.02, 0, 0)−  and (0.02, 0.02, 0.02) .        

CONCLUSION 

In this study, we can observe that as the first order PT for sphere is evaluated either 

by linear or quadratic elements, the error of the computation is smaller if quadratic 

elements is used. The results are also true when the center of mass of the sphere are 

changed, as presented in Fig. 1. Moreover, the average elements of PT when it is 

approximated for both sphere or cube geometries are similar when the center of mass 

for both objects are relocated at a different place. This suggests that the approximated 

PT are also similar for both objects independent of their center of mass. Therefore, 

these results agree with the previous proposed theory stated in Proposition 1. 
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