Transport emission models: A bibliometric and content analysis
Main Article Content
Abstract
Environment deterioration and subsequent climate change require the accountability of each contributor. Pollutants produced from fossil fuel in the transport sector is measured using emission models and this paper offers a Bibliometric analysis of these models from 1990-2020 of previous literature supported with the content analysis done in two tiers; review of the most cited research work of last ten years and the evolving research themes from recently published articles of last five years. From Bibliometric analysis, we identified top authors, institutions and journals, co-occurrence analysis of keywords, and co-authorship countries. Content analysis revealed that emission models have evolved globally with modifications and integrations of new techniques, multi disciplinary variables combining emission, transport, air quality, dispersion, and environment models. The technological adaptations in models have also been carried out locally by some countries bringing transport emissions to inventory counting for global warming potential. Research trends for future emission reduction suggest that besides the warming potential of fossil fuel from the transport sector, parallel reductions can be achieved through efficient traffic planning, road designs, driving patterns, stop and go cycles, traffic calming techniques impacting spatial and temporal goals through reduced clustering and hot spots.
Article Details
References
Abdull, N., Yoneda, M., Shimada, Y., 2020. Traffic characteristics and pollutant emission from road transport in urban area. Air Qual. Atmos. Heal. 13, 731–738. https://doi.org/10.1007/s11869-020-00830-w
Abou-Senna, H., Radwan, E., Westerlund, K., Cooper, C.D., 2013. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. J. Air Waste Manag. Assoc. 63, 819–831. https://doi.org/10.1080/10962247.2013.795918
Akbari, M., Khodayari, M., Danesh, M., Davari, A., Padash, H., 2020. A bibliometric study of sustainable technology research. Cogent Bus. Manag. 7. https://doi.org/10.1080/23311975.2020.1751906
Amirjamshidi, G., Roorda, M.J., 2015. Development of simulated driving cycles for light, medium, and heavy duty trucks: Case of the Toronto Waterfront Area. Transp. Res. Part D Transp. Environ. 34, 255–266. https://doi.org/10.1016/j.trd.2014.11.010
Bento, L.C., Parafita, R., Rakha, H.A., Nunes, U.J., 2019. A study of the environmental impacts of intelligent automated vehicle control at intersections via V2V and V2I communications. J. Intell. Transp. Syst. Technol. Planning, Oper. 23, 41–59. https://doi.org/10.1080/15472450.2018.1501272
Bernhardt, H., Sascha, W., Weihenstephan, W., 2016. A novel method for optimal fuel consumption estimation and planning for transportation systems 1–8. https://doi.org/10.1016/j.energy.2016.11.110
Bertoncini, B.V., Sales, F., Cavalcante, Á., 2017. Analysis of emission models integrated with traffic models for freight transportation study in urban areas Helry Luvillany Fontenele Dias * and Mona Lisa Moura de Oliveira and Ed Pinheiro Lima 20, 60–77.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., Builtjes, P., 2010. SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci. Model Dev. Discuss. 3, 949–1007. https://doi.org/10.5194/gmdd-3-949-2010
Borge, R., de Miguel, I., de la Paz, D., Lumbreras, J., Pérez, J., Rodríguez, E., 2012. Comparison of road traffic emission models in Madrid (Spain). Atmos. Environ. 62, 461–471. https://doi.org/10.1016/j.atmosenv.2012.08.073
BP Energy Outlook 2018, 2018. 2018 BP Energy Outlook 2018 BP Energy Outlook 125. https://doi.org/10.1088/1757-899X/342/1/012091
Chen, F., Yin, Z., Ye, Y., Sun, D., 2020. Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data. Transp. Policy 97, 73–84. https://doi.org/10.1016/j.tranpol.2020.04.001
Conditions, C., 2019. Evaluating the Environmental Impact of Bus Signal Consumption Conditions.
Coulombel, N., Dablanc, L., Gardrat, M., Koning, M., 2018. The environmental social cost of urban road freight: Evidence from the Paris region. Transp. Res. Part D Transp. Environ. 63, 514–532. https://doi.org/10.1016/j.trd.2018.06.002
Dalby, S., 2013. Climate Change. RUSI J. 158, 34–43. https://doi.org/10.1080/03071847.2013.807583
Demir, E., Bektaş, T., Laporte, G., 2011. A comparative analysis of several vehicle emission models for road freight transportation. Transp. Res. Part D Transp. Environ. 16, 347–357. https://doi.org/10.1016/j.trd.2011.01.011
Dente, S.M.R., Tavasszy, L., 2017. Policy oriented emission factors for road freight transport. Transp. Res. Part D Transp. Environ. 61, 33–41. https://doi.org/10.1016/j.trd.2017.03.021
Dias, D., Humberto, J., Sá, E., Borrego, C., Fontes, T., Fernandes, P., Ramos, S., Bandeira, J., Coelho, M.C., Tchepel, O., 2018. Assessing the importance of transportation activity data for urban emission inventories. Transp. Res. Part D 62, 27–35. https://doi.org/10.1016/j.trd.2018.01.027
Dong, Y., Xu, J., Gu, C., 2020. Modelling carbon emissions of diesel trucks on longitudinal slope sections in China. PLoS One 15, 1–17. https://doi.org/10.1371/journal.pone.0234789
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M., 2021a. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. https://doi.org/10.1016/j.jbusres.2021.04.070
Donthu, N., Kumar, S., Pandey, N., Lim, W.M., 2021b. Research Constituents, Intellectual Structure, and Collaboration Patterns in Journal of International Marketing: An Analytical Retrospective. J. Int. Mark. https://doi.org/10.1177/1069031X211004234
Elkafoury, A., Negm, A.M., Aly, M.H., Bady, M.F., Ichimura, T., 2015. Develop dynamic model for predicting traffic CO emissions in urban areas. https://doi.org/10.1007/s11356-015-4319-8
Esteves-Booth, A., Muneer, T., Kubie, J., Kirby, H., 2002. A review of vehicular emission models and driving cycles. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 216, 777–797. https://doi.org/10.1243/09544060260171429
Estévez-mauriz, L., Forssén, J., 2018. Dynamic traffic noise assessment tool : A comparative study between a roundabout and a signalised intersection 130, 71–86. https://doi.org/10.1016/j.apacoust.2017.09.003
Etuman, A.E., Coll, I., Interuniversitaire, L., Lisa, A., Cnrs, U.M.R., Paris, U., Créteil, E., 2018. OLYMPUS v1 . 0 : development of an integrated air pollutant and GHG urban emissions model – methodology and calibration over greater Paris 5085–5111.
Fan, J., Gao, K., Xing, Y., Lu, J., 2019. Evaluating the Effects of One-Way Traffic Management on Different Vehicle Exhaust Emissions Using an Integrated Approach 2019.
Ferreira Mercuri, E.G., Jakubiak Kumata, A.Y., Amaral, E.B., Simões Vitule, J.R., 2016. Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renew. Sustain. Energy Rev. 65, 832–840. https://doi.org/10.1016/j.rser.2016.06.050
Fiore, A.M., Naik, V., Leibensperger, E.M., 2015. Air quality and climate connections. J. Air Waste Manag. Assoc. 65, 645–685. https://doi.org/10.1080/10962247.2015.1040526
Fontes, T., Pereira, S.R., Fernandes, P., Bandeira, J.M., Coelho, M.C., 2015. How to combine different microsimulation tools to assess the environmental impacts of road traffic? Lessons and directions. Transp. Res. Part D Transp. Environ. 34, 293–306. https://doi.org/10.1016/j.trd.2014.11.012
Ghafghazi, G., Hatzopoulou, M., 2014. Simulating the environmental effects of isolated and area-wide traffic calming schemes using traffic simulation and microscopic emission modeling. Transportation (Amst). 41, 633–649. https://doi.org/10.1007/s11116-014-9513-x
Grote, M., Williams, I., Preston, J., Kemp, S., 2016a. Including congestion effects in urban road traffic CO2 emissions modelling: Do Local Government Authorities have the right options? Transp. Res. Part D Transp. Environ. 43, 95–106. https://doi.org/10.1016/j.trd.2015.12.010
Grote, M., Williams, I., Preston, J., Kemp, S., Grote, M., Williams, I., Preston, J., Kemp, S., 2016b. Local government authority attitudes to road traffic CO 2 emissions modelling : a British case study emissions modelling : a British case study. Transp. Plan. Technol. 0, 1–19. https://doi.org/10.1080/03081060.2016.1238570
Guevara, M., Martínez, F., Arévalo, G., Gassó, S., Baldasano, J.M., 2013. An improved system for modelling Spanish emissions: HERMESv2.0. Atmos. Environ. 81, 209–221. https://doi.org/10.1016/j.atmosenv.2013.08.053
Guo, Y.M., Huang, Z.L., Guo, J., Li, H., Guo, X.R., Nkeli, M.J., 2019. Bibliometric analysis on smart cities research. Sustain. https://doi.org/10.3390/su11133606
Guo, Y.N., Cheng, J., Luo, S., Gong, D., Xue, Y., 2018. Robust Dynamic Multi-Objective Vehicle Routing Optimization Method. IEEE/ACM Trans. Comput. Biol. Bioinforma. 15, 1891–1903. https://doi.org/10.1109/TCBB.2017.2685320
Guzman, L.A., Orjuela, J.P., 2017. Linking a transport dynamic model with an emissions model to aid air pollution evaluations of transport policies in Latin America. Transp. B 5, 270–285. https://doi.org/10.1080/21680566.2016.1169954
Harris, I., Naim, M., Palmer, A., Potter, A., Mumford, C., IPCC, 2011. Emissions: Enery, Road Transport. Good Pract. Guid. Uncertain. Manag. Natl. Greenh. Gas Invent. 131, 55–70. https://doi.org/10.1016/j.ijpe.2010.03.005
Henderson, R., Reinert, S., Dekhtyar, P., Migdal, A., 2016. Climate Change in 2016: Implications for Business. Harvard Bus. Sch.
Hooftman, N., Oliveira, L., Messagie, M., Coosemans, T., Van Mierlo, J., 2016. Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting. Energies 9, 1–24. https://doi.org/10.3390/en9020084
Hou, Y., Wang, Q., 2021. A bibliometric study about energy, environment, and climate change. Environ. Sci. Pollut. Res. 28, 34187–34199. https://doi.org/10.1007/s11356-021-14059-2
International Transport Forum, 2018. Transport CO2 and the Paris Climate Agreement: Reviewing the Impact of Nationally Determined Contributions. OECD Publ. 1–36.
Iodice, P., Senatore, A., 2016. New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements. Environ. Impact Assess. Rev. 61, 61–67. https://doi.org/10.1016/j.eiar.2016.07.004
IPCC, 2014a. Climate Change 2014: Mitigation of Climate Change, Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416
IPCC, 2014b. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers. Ipcc 31. https://doi.org/10.1017/CBO9781107415324
Jamshidnejad, A., Papamichail, I., Papageorgiou, M., De Schutter, B., 2017. A mesoscopic integrated urban traffic flow-emission model. Transp. Res. Part C Emerg. Technol. 75, 45–83. https://doi.org/10.1016/j.trc.2016.11.024
Jaworski, A., 2019. Creating an emission model based on portable emission measurement system for the purpose of a roundabout 21641–21654.
Kan, Z., Wong, M.S., Zhu, R., 2020. Understanding space-time patterns of vehicular emission flows in urban areas using geospatial technique. Comput. Environ. Urban Syst. 79, 101399. https://doi.org/10.1016/j.compenvurbsys.2019.101399
Kaya Ozbag, G., Esen, M., Esen, D., 2019. Bibliometric Analysis of Studies on Social Innovation. Int. J. Contemp. Econ. Adm. Sci. 9, 25–45. https://doi.org/10.5281/zenodo.3262221
Kholod, N., Evans, M., Gusev, E., Yu, S., Malyshev, V., Tretyakova, S., Barinov, A., 2016. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk. Sci. Total Environ. 547, 305–313. https://doi.org/10.1016/j.scitotenv.2015.12.151
Kirschstein, T., Meisel, F., 2015. GHG-emission models for assessing the eco-friendliness of road and rail freight transports. Transp. Res. Part B Methodol. 73, 13–33. https://doi.org/10.1016/j.trb.2014.12.004
Krecl, P., Johansson, C., Targino, A.C., Ström, J., Burman, L., 2017. Trends in black carbon and size-resolved particle number concentrations and vehicle emission factors under real-world conditions. Atmos. Environ. 165, 155–168. https://doi.org/10.1016/j.atmosenv.2017.06.036
Lajevardi, S.M., Axsen, J., Crawford, C., 2018. Examining the role of natural gas and advanced vehicle technologies in mitigating CO 2 emissions of heavy-duty trucks : Modeling prototypical British Columbia routes with road grades. Transp. Res. Part D 62, 186–211. https://doi.org/10.1016/j.trd.2018.02.011
Lee, G., Joo, S., Oh, C., Choi, K., 2013. An evaluation framework for traffic calming measures in residential areas. Transp. Res. Part D Transp. Environ. 25, 68–76. https://doi.org/10.1016/j.trd.2013.08.002
Lee, G., You, S.I., Ritchie, S.G., Saphores, J.D., Jayakrishnan, R., Ogunseitan, O., 2012. Assessing air quality and health benefits of the Clean Truck Program in the Alameda corridor, CA. Transp. Res. Part A Policy Pract. 46, 1177–1193. https://doi.org/10.1016/j.tra.2012.05.005
Lefebvre, W., Degrawe, B., Beckx, C., Vanhulsel, M., Kochan, B., Bellemans, T., Janssens, D., Wets, G., Janssen, S., de Vlieger, I., Int Panis, L., Dhondt, S., 2013. Presentation and evaluation of an integrated model chain to respond to traffic- and health-related policy questions. Environ. Model. Softw. 40, 160–170. https://doi.org/10.1016/j.envsoft.2012.09.003
Li, X., Lopes, D., Mok, K.M., Miranda, A.I., 2019. Development of a road traffic emission inventory with high spatial – temporal resolution in the world ’ s most densely populated region — Macau.
Ligterink, N.E., Tavasszy, L.A., de Lange, R., 2012. A velocity and payload dependent emission model for heavy-duty road freight transportation. Transp. Res. Part D Transp. Environ. 17, 487–491. https://doi.org/10.1016/j.trd.2012.05.009
Linton, C., Grant-Muller, S., Gale, W.F., 2015. Approaches and Techniques for Modelling CO2 Emissions from Road Transport. Transp. Rev. 35, 533–553. https://doi.org/10.1080/01441647.2015.1030004
Liu, H., Guensler, R., Lu, H., Xu, Y., Xu, X., Rodgers, O., 2019. ce pt ed us cr t. J. Air Waste Manage. Assoc. 0. https://doi.org/10.1080/10962247.2019.1640806
Liu, Z., Li, L., Zhang, Y.J., 2015. Investigating the CO2 emission differences among China’s transport sectors and their influencing factors. Nat. Hazards 77, 1323–1343. https://doi.org/10.1007/s11069-015-1657-2
López-Martínez, J.M., Jiménez, F., Páez-Ayuso, F.J., Flores-Holgado, M.N., Arenas, A.N., Arenas-Ramirez, B., Aparicio-Izquierdo, F., 2017. Modelling the fuel consumption and pollutant emissions of the urban bus fleet of the city of Madrid. Transp. Res. Part D Transp. Environ. 52, 112–127. https://doi.org/10.1016/j.trd.2017.02.016
Ma, X., Jin, J., Lei, W., 2014. Multi-criteria analysis of optimal signal plans using microscopic traffic models. Transp. Res. Part D Transp. Environ. 32, 1–14. https://doi.org/10.1016/j.trd.2014.06.013
Mahesh, S., Ramadurai, G., Nagendra, S.M.S., 2019. Real-world emissions of gaseous pollutants from motorcycles on Indian urban arterials. Transp. Res. Part D 76, 72–84. https://doi.org/10.1016/j.trd.2019.09.010
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E., 2018. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177. https://doi.org/10.1016/j.joi.2018.09.002
Mues, A., Kuenen, J., Hendriks, C., Manders, A., Segers, A., Scholz, Y., Hueglin, C., Builtjes, P., Schaap, M., 2014. Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions. Atmos. Chem. Phys. 14, 939–955. https://doi.org/10.5194/acp-14-939-2014
Nagpure, A.S., Gurjar, B.R., 2012. Development and evaluation of vehicular air pollution inventory model. Atmos. Environ. 59, 160–169. https://doi.org/10.1016/j.atmosenv.2012.04.044
NHTSA, 2016. Fatalities in the United States 472–485.
Ntziachristos, L., Mellios, G., Tsokolis, D., Keller, M., Hausberger, S., Ligterink, N.E., Dilara, P., 2014. In-use vs. type-approval fuel consumption of current passenger cars in Europe. Energy Policy 67, 403–411. https://doi.org/10.1016/j.enpol.2013.12.013
Ntziachristos, L., Papadimitriou, G., Ligterink, N., Hausberger, S., 2016. Implications of diesel emissions control failures to emission factors and road transport NOx evolution. Atmos. Environ. 141, 542–551. https://doi.org/10.1016/j.atmosenv.2016.07.036
Nyhan, M., Sobolevsky, S., Kang, C., Robinson, P., Corti, A., Szell, M., Streets, D., Lu, Z., Britter, R., Barrett, S.R.H., Ratti, C., 2016. Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model. Atmos. Environ. 140, 352–363. https://doi.org/10.1016/j.atmosenv.2016.06.018
Olivier, J.G.J. (PBL), Janssens-Maenhout, G. (EC-J., Muntean, M. (EC-J., Peters, J.A.H.W. (PBL), 2016. Trends in Global CO2 Emissions: 2016 Report. PBL Netherlands Environ. Assess. Agency Eur. Comm. Jt. Res. Cent. 86.
Perez-prada, F., Monzon, A., Valdes, C., 2017. Managing Traffic Flows for Cleaner Cities : The Role of Green Navigation Systems 1–18. https://doi.org/10.3390/en10060791
Perianes-Rodriguez, A., Waltman, L., van Eck, N.J., 2016. Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetr. https://doi.org/10.1016/j.joi.2016.10.006
Perugu, H., Wei, H., Yao, Z., 2017. Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output. Atmos. Environ. 155, 210–230. https://doi.org/10.1016/j.atmosenv.2017.02.020
Prakash, J., Habib, G., 2018. SC. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2018.02.053
Pranckutė, R., 2021. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications. https://doi.org/10.3390/publications9010012
Qiu, Z., Li, X., Hao, Y., 2016. Emission inventory estimation of an intercity bus terminal. Environ. Monit. Assess. https://doi.org/10.1007/s10661-016-5370-8
Rafael, S., Correia, L.P., Lopes, D., Bandeira, J., Coelho, M.C., Andrade, M., Borrego, C., Miranda, A.I., 2020. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 712, 136546. https://doi.org/10.1016/j.scitotenv.2020.136546
Sacone, S., Pasquale, C., Siri, S., Ferrara, A., 2020. Traffic control for the improvement of sustainability in freeway networks: A bibliometric analysis. IFAC-PapersOnLine 53, 17505–17510. https://doi.org/10.1016/j.ifacol.2020.12.2655
Sayegh, A.S., Connors, R.D., Tate, J.E., 2018. Uncertainty propagation from the cell transmission traffic flow model to emission predictions: A data-driven approach. Transp. Sci. 52, 1327–1346. https://doi.org/10.1287/trsc.2017.0787
Secinaro, S., Brescia, V., Calandra, D., Biancone, P., 2020. Employing bibliometric analysis to identify suitable business models for electric cars. J. Clean. Prod. 264, 121503. https://doi.org/10.1016/j.jclepro.2020.121503
Shekarrizfard, M., Faghih-Imani, A., Hatzopoulou, M., 2016. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environ. Res. 147, 435–444. https://doi.org/10.1016/j.envres.2016.02.039
Sider, T., Naveen, G.G., Hatzopoulou, M., 2015. Quantifying the effects of input aggregation and model randomness on regional transportation emission inventories. https://doi.org/10.1007/s11116-015-9577-2
Sikandar, H., Umar Haiyat Abdul Kohar, Sidra Salam, 2021a. The evolution of social innovation and its global research trends: A bibliometric analysis. Syst. Lit. Rev. Meta-Analysis J. https://doi.org/10.54480/slrm.v1i2.9
Sikandar, H., Vaicondam, Y., Parveen, S., Khan, N., Qureshi, M.I., 2021b. Bibliometric Analysis of Telemedicine and E-Health Literature. Int. J. Online Biomed. Eng. 17, 52–69. https://doi.org/10.3991/ijoe.v17i12.25483
Singh, V.K., Singh, P., Karmakar, M., Leta, J., Mayr, P., 2021. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 126, 5113–5142. https://doi.org/10.1007/s11192-021-03948-5
Su, Y., Yu, Y., Zhang, N., 2020. Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Sci. Total Environ. 733, 138984. https://doi.org/10.1016/j.scitotenv.2020.138984
Tan, H., Li, Jialing, He, M., Li, Jiayu, Zhi, D., Qin, F., Zhang, C., 2021. Global evolution of research on green energy and environmental technologies:A bibliometric study. J. Environ. Manage. 297, 113382. https://doi.org/10.1016/j.jenvman.2021.113382
Thomas, M., 2017. – Research for Tran Committee – the Port of Marseille 6.
Tian, X., Geng, Y., Zhong, S., Wilson, J., Gao, C., Chen, W., Yu, Z., Hao, H., 2018. A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transp. Res. Part D Transp. Environ. 59, 1–10. https://doi.org/10.1016/j.trd.2017.12.009
Tu, R., Kamel, I., Wang, A., Abdulhai, B., Hatzopoulou, M., 2018. Development of a hybrid modelling approach for the generation of an urban on-road transportation emission inventory. Transp. Res. Part D 62, 604–618. https://doi.org/10.1016/j.trd.2018.04.011
Tu, R., Wang, A., Hatzopoulou, M., Wang, A., 2019. ce pt ed us cr t. J. Air Waste Manage. Assoc. 0. https://doi.org/10.1080/10962247.2019.1668872
U.S. Environmental Protection Agency, 2016. Greenhouse Gas Inventory Guidance: Direct Emissions from Stationary Combustion Sources. Energy Econ. 34, 1580–1588.
Verma, S., Gustafsson, A., 2020. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. J. Bus. Res. https://doi.org/10.1016/j.jbusres.2020.06.057
Vicente, B., Rafael, S., Rodrigues, V., Relvas, H., Vilaça, M., Teixeira, J., Bandeira, J., Coelho, M., Borrego, C., Rafael, S., 2018. Influence of different complexity levels of road traffic models on air quality modelling at street scale 1217–1232.
Wang, C., Ye, Z., Yu, Y., Gong, W., 2018. Estimation of bus emission models for different fuel types of buses under real conditions. Sci. Total Environ. 640–641, 965–972. https://doi.org/10.1016/j.scitotenv.2018.05.289
Wang, H., Zeng, W., 2019. Revealing Urban Carbon Dioxide ( CO 2 ) Emission Characteristics and Influencing Mechanisms from the Perspective of Commuting. https://doi.org/10.3390/su11020385
Wang, J., Rakha, H.A., Fadhloun, K., 2017. Validation of the Rakha-Pasumarthy-Adjerid car-following model for vehicle fuel consumption and emission estimation applications. Transp. Res. Part D Transp. Environ. 55, 246–261. https://doi.org/10.1016/j.trd.2017.06.030
Wang, Z., Chen, F., Fujiyama, T., 2015. Carbon emission from urban passenger transportation in Beijing. Transp. Res. Part D Transp. Environ. 41, 217–227. https://doi.org/10.1016/j.trd.2015.10.001
Waraich, A.S., Anowar, S., Tenaglia, T., Sider, T., Alam, A., Minaei, N.S., Hatzopoulou, M., Eluru, N., 2020. Disaggregate level simulation of bus transit emissions in a large urban region. Int. J. Sustain. Transp. 14, 544–553. https://doi.org/10.1080/15568318.2019.1579009
Weng, J., Liang, Q., Qiao, G., Chen, Z., 2017. Taxi fuel consumption and emissions estimation model based on the reconstruction of driving trajectory 9, 1–12. https://doi.org/10.1177/1687814017708708
Wohlstadter, M., Shoaib, L., Posey, J., Welsh, J., Fishman, J., 2016. Environmental Modelling & Software Short communication A Python toolkit for visualizing greenhouse gas emissions at sub-county scales. Environ. Model. Softw. 83, 237–244. https://doi.org/10.1016/j.envsoft.2016.05.016
Xing, Y., Brimblecombe, P., Ning, Z., 2019. Science of the Total Environment Fine-scale spatial structure of air pollutant concentrations along bus routes. Sci. Total Environ. 658, 1–7. https://doi.org/10.1016/j.scitotenv.2018.12.001
Xu, J., Dong, Y., Yan, M., 2020. A model for estimating passenger-car carbon emissions that accounts for uphill, downhill and flat roads. Sustain. 12. https://doi.org/10.3390/su12052028
Xu, J., Saleh, M., Wang, A., Tu, R., Hatzopoulou, M., 2019. Embedding local driving behaviour in regional emission models to increase the robustness of on-road emission inventories. Transp. Res. Part D 73, 1–14. https://doi.org/10.1016/j.trd.2019.05.011
Xu, Y., Gbologah, F.E., Lee, D.Y., Liu, H., Rodgers, M.O., Guensler, R.L., 2015. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling. Appl. Energy 154, 143–159. https://doi.org/10.1016/j.apenergy.2015.04.112
Xu, Z., Wei, T., Easa, S., Zhao, X., Qu, X., 2018. Modeling Relationship between Truck Fuel Consumption and Driving Behavior Using Data from Internet of Vehicles. Comput. Civ. Infrastruct. Eng. 33, 209–219. https://doi.org/10.1111/mice.12344
Yang, L., Wang, Y., Lian, Y., Han, S., 2020. Factors and scenario analysis of transport carbon dioxide emissions in rapidly-developing cities. Transp. Res. Part D Transp. Environ. 80, 102252. https://doi.org/10.1016/j.trd.2020.102252
Yu, D., He, X., 2020. A bibliometric study for DEA applied to energy efficiency: Trends and future challenges. Appl. Energy 268, 115048. https://doi.org/10.1016/j.apenergy.2020.115048
Yu, L., Jia, S., Shi, Q., 2009. Research on transportation-related emissions: Current status and future directions. J. Air Waste Manag. Assoc. 59, 183–195. https://doi.org/10.3155/1047-3289.59.2.183
Zhang, X., Xu, J., Li, M., Li, Q., Yang, L., 2019. Modeling Impacts of Highway Circular Curve Elements on Heavy-Duty Diesel Trucks ’ CO 2 Emissions.
Zhao, H., He, R., Jia, X., 2019. Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model.