RASCH ANALYSIS OF THE EMPLOYABILITY SKILLS FOR ELECTRICAL TECHNOLOGY STUDENTS IN NIGERIA

Sunday Rufus Olojuolawe*

Vocational and Technical Education Department
College of Education, Ikere-Ekiti, Ekiti State
Nigeria

Nor Fadila Amin

Technical and Engineering Education Department
Universiti Teknologi Malaysia UTM
Malaysia

*Corresponding author’s Email: olojuolawerufus4@gmail.com

Peer-review under responsibility of 3rd Asia International Multidisciplinary Conference 2019 editorial board
(http://www.utm.my/asia/our-team/)

© 2019 Published by Readers Insight Publisher,
Iat 306 Savoy Residencia, Block 3 F11/1,44000 Islamabad. Pakistan,
info@readersinsight.net

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Research Highlights
The study was guided by three research questions. The two results from the document analysis and interview were triangulated to generate the Interim framework of employability skills. To narrow the framework to meet the specific needs of electrical technology students in Colleges of Education, an item pool was designed to be able to survey the agreement index level of Electrical Technology experts. The Fleiss Kappa agreement ratio conducted gave 89.63%, 86.01%, and 81.86% respectively with a mean agreement of 85.83%. The 85.83% represents an ‘almost perfect agreement’ which is very good for producing a functional and narrow framework of employability skills (Jollands, 2015). The Winstep analysis gave the following results: item separation = 2.18, reliability = .83. the person separation = 3.85, and the person reliability = .94. Cronbach Alpha = .95. The result indicates three levels of the item. The most difficult items moderate, and the less difficult items.

MEASURE PERSON - MAP - MOST DIFFICULT ITEMS
<more>|<rare>
2 +
X | IN3
X T| TM4
| S|T
XXX| NA1 TC8
XX | TC9
1 XXXX M+ IT2 PM5
XXXXXX | NA3 NA4 ND3
XX | ST3 IU6 NC1
X S| CT2 ES5 IU1 IU3 IU5 NC3 ND1 ON7 ON9
PO1 PO2 PO5 PO6 PS1
X | CT3 ES2 ES3 ES4 ES6 IT1 IT5 NA2 NA5
NC6 NP2 NP3 ON4 ON6 ON8 PO3 PQ4 PS2
SC3
| CT1 CT4 CT5 ES1 IT4 IU4 NC2 NC5 ND5
NM1 NM4 ON11 ON2 ON5 PO4 PO7 PQ2 PQ5
PS3 SK4 TC10 TC11 TC5 TC6 TG3 TT2
T| IU2 IU7 NC4 NM2 NN3 NN5 NP1 NT1 NT5
ON10 PQ1 PS4 SC1 SC5 SK1 TB2 TB4 TG1
TG5 TI2
0 +M IN4 LL3 NM3 NM5 NN4 NP4 NP5 ON3 SC2
SC4 SK3 TG4
X | LL4 LL5 ND4 NN2 NT2 NT3 NT4 PQ3 SK2
SK5 TB1 TB3 TC12 TG2 TI6
| LL2 ON1
| IN5
| LL1 NN1 TI5
| S ND2 TI9 TM1 TM5
| NI2 PM2 TI8 TM6 TM7
-1 + NI1 NI5 TS8 TT3

Copyright © 2019 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Research Objectives

The major objective of the study is to propose a 21st-Century employability skill suitable for matching Electrical Technology students in Colleges of Education with the needs of the Employers in Nigeria. This is aimed at reducing the unemployment rate among the graduates. The study serves both theoretical and practical purposes. The theoretical framework helps to extend the body of knowledge on employability skills. Practically, the study is sufficient to match the students with the need of the labour market. This is a way will help to reduce the growing rate of unemployment among the graduates. Thus, the proposed framework will be beneficial to the government in remodeling the College curriculum to be 21st-Century compliant. Overall, the study will be beneficial to the Colleges, and the society in the reduction of the crime rate being perpetrated by the jobless youths.

Methodology

The research design was a sequential mixed method. The qualitative method involving document analysis and interview protocol was used to determine the constructs and sub-constructs of employability skills required by Electrical Technology students. The analysis was done thematically. 10 participants were involved in the study. The educational research utilizes interview and inquiries about the respondent’s feelings, attitudes, motivation, experiences of individuals and accomplishments (Anderson, 2010; Ivankova, 2014). The open-ended interview was used to elicit self-report on employability skills from the participants. Personal contacts were used during data collection. The responses of the participants were audio-recorded with the aid of electronic media. The transcribed information was taken back to the participants for confirmation and authentication. This is to ensure the validity of the data.

The document analysis was done using a frequency matrix. For the Rasch Analysis, 157 items were measured with 18PD and 12IDE. Table 1 Describes Fleiss Kappa Agreement levels.

<table>
<thead>
<tr>
<th>Kappa Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.00</td>
<td>poor</td>
</tr>
<tr>
<td>0.01 to 0.20</td>
<td>Slight</td>
</tr>
<tr>
<td>0.21 to 0.40</td>
<td>Fair</td>
</tr>
<tr>
<td>0.41 to 0.60</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.61 to 0.80</td>
<td>Substantial</td>
</tr>
<tr>
<td>0.81 to 0.99</td>
<td>Almost perfect</td>
</tr>
</tbody>
</table>

Source: (Fleiss, 1973; Viera, & Garrett, 2005).
Results
The result of the study indicates that both hard skills and soft skills are important for the employability of Electrical Technology students. 5 main constructs, 43 sub-constructs and 193 items of employability skills were generated from the item pool. The main constructs are classified into technical and non-technical skills which were referred to as visible competencies (Boyatzis, 1982; Spencer, & Spencer, 1993). The technical skills consist of Electrical-specific skills which include, construction, installation, troubleshooting safety, and direct current. The non-technical skills are generic or employability skills (Tymon, 2013). They include personality skills, People Oriented skills, Applied Knowledge skills, Workplace skills, and Entrepreneurial skills. The sub-constructs consist of skills such as integrity, initiative, dependability, adaptability, professionalism, communication, teamwork, organizational, sensitivity, flexibility negotiation, numeracy, technology, scientific skill, critical thinking, information technology, problem-solving, decision making, planning and organizing, resource management, information usage, service-oriented, innovativeness, ability skill, resourcefulness, motivation and commitment, strategic and visionary. The hidden competencies consist of self-concepts and motives. In all, there were 5 main constructs and 39 sub-constructs from document analysis.

Findings
Findings revealed that not all the sub-constructs of technical and non-technical skills are essential for the employability of Electrical Technology students. Some of the items were too difficult. (Most difficult items are IN3 & TM4), some were found around the item mean of the items (moderate items), while the others were below the item mean (lowest items). This implies that they did not match the students with the needs of the employers. Similarly, with the item separation of >2.00, and reliability of > .80, the instrument had been able to separate and verify the item hierarchy (Linacre, 2002).

References